Teilinstitut Dynamik/Mechatronik - Mitarbeiter
Home | english  | Impressum | Datenschutz | Sitemap | KIT
Teilinstitut Dynamik/Mechatronik

Prof. Wolfgang Seemann
Prof. Carsten Proppe
Prof. Alexander Fidlin


Karlsruher Institut für Technologie (KIT)
Kaiserstraße 10
Gebäude: 10.23, 2. OG
76131 Karlsruhe

Tel:  +49 721 608-42397
Tel:  +49 721 608-42659
Fax: +49 721 608-46070
dm-sekretariatMhe5∂itm kit edu

Schnelleinstieg Teilinstitut Dynamik/Mechatronik

Prof. Dr.-Ing. Jens Deppler

Karlsruher Institut für Technologie (KIT)
Kaiserstraße 10
Gebäude: 10.23
76131 Karlsruhe


Regularization of Nonholonomic Constraints in Multibody Systems

Rolling disk on flat surface
Rolling disk on a flat support
Motion of rolling disk
General rolling contact
General rolling contact

Rolling contacts are usual in various technical systems. Gear wheels in gearboxes, the motion of rolling elements in roller bearings or the Euler disk can be mentioned here as examples. Even the sliding of a clutch disk on an elastic support can become unstable transitioning into a rolling motion. In most cases rolling motion conditions yield non- holonomic constraint equations. Usually the non-holonomic constraints can be incorporated by the method of Lagrange multipliers. This formulation leads to index-2 differential algebraic problems. Different regularization approaches have been developed for higher index DAEs because of the numerical drift problems inherent for usual ODE methods. In the present paper we investigate a new regularization method that is motivated by physical considerations. Pure rolling is equal to “sticking” with a kinematically repositioned contact point. Usually sticking is modeled by introducing elasticity in the contact. Although constraints are mainly enforced by the elasticity in that case and the dissipative terms are necessary in order to avoid numerical oscillations in the contact. A suitable choice of the order of magnitude of the dissipative forces enhances the numerical performance of the method. The purpose of this kind of regularization is to get a consistent description for sliding, sticking and rolling contacts. Stamm applied this kind of regularization to a tangential contact law, extending the classical laws of friction to distributed contacts, where the problem of indeterminacy in the sticking state is circumvented by regularization. It this work we prove the convergency of the spring-damper regularization for the so called principal damping, which is motivated by the critical damping in the linear case, and the strong damping which is of the same magnitude order as the contact stiffness.

Contact: Prof. A. Fidlin, J. Deppler


Abgeschlossene oder vergebene studentische Arbeiten
Titel Typ Bearbeiter

Philipp Mall


Björn Braun


Kai Becker


Betreute Lehrveranstaltungen
Semester Titel
SS 2020
SS 2020
WS 19/20
SS 15
WS 14/15
SS 14
SS 14
WS 13/14
SS 13
WS 12/13
SS 12
WS 11/12