Teilinstitut Dynamik/Mechatronik - Mitarbeiter
Home | english  | Impressum | Datenschutz | Sitemap | KIT
Teilinstitut Dynamik/Mechatronik
""

Prof. Wolfgang Seemann
Prof. Carsten Proppe
Prof. Alexander Fidlin

 

Karlsruher Institut für Technologie (KIT)
Kaiserstraße 10
Gebäude: 10.23, 2. OG
76131 Karlsruhe

Sekretariat:
Tel:  +49 721 608-42397
Tel:  +49 721 608-42659
Fax: +49 721 608-46070
dm-sekretariatEgw3∂itm kit edu

Schnelleinstieg Teilinstitut Dynamik/Mechatronik
JB

M.Sc. Jens Burgert

Wissenschaftlicher Mitarbeiter
Sprechstunden: 

Nach Vereinbarung


Raum: 206.2
Tel.: +49 721 608-44150
Fax: +49 721 608-46070
jens burgertDca6∂kit edu

Postanschrift:
Karlsruher Institut für Technologie
Institut für Technische Mechanik
Teilinstitut Dynamik/Mechatronik
Postfach 6980
76049 Karlsruhe

Haus- und Lieferanschrift:
KIT-Campus Süd
Institut für Technische Mechanik
Teilinstitut Dynamik/Mechatronik
Geb. 10.23, 2.OG
Kaiserstraße 10
76131 Karlsruhe



Forschung: Optimized wave propagation based on the example of percussion drilling

Impacting rods are used in various devices in practical life but also for scientific experiments. Examples are rock drilling and piling machinery, while the Hopkinson split bar is used for testing materials. The typical arrangement is a primary rod with a tool at the end contacting the process material and a free tip, onto which a piston rod is hitting with a given kinetic energy. The hit is followed by a complicated sequence of phenomena. A stress wave, whose length is double the physical length of the piston rod, starts to propagate along the primary rod to finally reach the tool-process material interface. In case of rock drilling machine, a nonlinear penetration of the bit into the rock takes place and a reflecting wave component is generated. In the Hopkinson apparatus the test specimen experiences axial deformations and the stress wave is split into reflecting wave in the primary rod and into transmitted wave in the secondary rod beyond the test specimen. In the long history of rock drilling, fundamental mechanisms contributing to the effective drilling process are still unknown. To produce maximal tool penetration for each hit, rules have to be derived which specify the dimensioning of the piston and drill rod. Recent investigations, that cover the issue of optimization, are revealing that the efficiency of the drilling process strongly depends on the shape of the longitudinal wave transmitted through the drill rod to the drill bit. A well-known fact is that the cross-sectional profile of the piston is shaping the stress wave profile. Therefore, the main object of the research project is to adjust the geometrical form of the impacting piston for an optimized shape of the stress wave from which a maximal penetration follows.


Experimental results of an impact recorded with a high speed camera


Stress at piston and rod after the impact (left) and the corresponding energy distribution (right)

Abschlussarbeiten

Bei Interesse an einer Bachelor- oder Masterarbeit können Sie sich gerne persönlich an mich wenden

Publikationen


Optimization of the piston geometry to generate a desired stress wave shape.
Burgert, J.; Seemann, W.; Hartenbach, F.
2017. Proceedings in applied mathematics and mechanics, 17 (1, SI), 675–676. doi:10.1002/pamm.201710306
Betreute Lehrveranstaltungen
Semester Titel
WS 19/20
WS 19/20
SS 2019
SS 18
SS 18
WS 17/18
SS 17
SS 17
WS 16/17
WS 16/17
SS 2016
SS 2016