Teilinstitut Dynamik/Mechatronik - Mitarbeiter
Home | english  | Impressum | Datenschutz | Sitemap | KIT
Teilinstitut Dynamik/Mechatronik
""

Prof. Wolfgang Seemann
Prof. Carsten Proppe
Prof. Alexander Fidlin

 

Karlsruher Institut für Technologie (KIT)
Kaiserstraße 10
Gebäude: 10.23, 2. OG
76131 Karlsruhe

Sekretariat:
Tel:  +49 721 608-42397
Tel:  +49 721 608-42659
Fax: +49 721 608-46070
dm-sekretariatOcp3∂itm kit edu

Schnelleinstieg Teilinstitut Dynamik/Mechatronik

M.Sc. Alexander Bitner

Wissenschaftlicher Mitarbeiter
Sprechstunden: 

nach Vereinbarung


Raum: 203
Tel.: +49721 608-47623
Fax: +49 721 608-46070
alexander bitnerRcc5∂kit edu

Postanschrift:
Karlsruher Institut für Technologie
Institut für Technische Mechanik
Teilinstitut Dynamik/Mechatronik
Postfach 6980
76049 Karlsruhe

Haus- und Lieferanschrift:
KIT-Campus Süd
Institut für Technische Mechanik
Teilinstitut Dynamik/Mechatronik
Gebäude 10.23, 2.OG, Raum 203
Kaiserstraße 10
76131 Karlsruhe



Dynamics of Piezo Actuated Journal Bearings

Rotor-bearing system
Rotor-bearing system
Piezo actuation
Piezo actuated shaping

The dynamic behaviour of rotor-bearing systems represents an ongoing field of research.

By increasing the rotational speed of the rotor an instability can be detected which is often referred to as "oil-whirl" or "half-frequency-whirling" in literature. As the frequency of this "whirling" instability meets an eigenfrequency of the associated elastic rotor, its oscillation amplitudes increase tremendously which is also known as "oil-whip". These "oil-whirl" and "oil-whip" effects can be rated as rather critical and should be avoided during the operation of the rotor-bearing system.
Various modifications (compared to the "classical" cylindrical bearing) have been proposed in literature in order to suppress or at least to decrease these unwanted effects. By modifying the shape of the bearing sleeves improvements of the rotor's dynamic behaviour are expected. Starting from an initially circular shape, the bearing sleeve is elastically deformed by piezoelectric actuators which leads to a complex fluid-solid-interaction.

The effects of the piezo actuated shaping on the rotor-bearing system are studied by means of systematic stability and bifurcation analysis, focusing on time-efficient modelling methods.


Contact: Prof. W. Seemann, A. Bitner


Publikationen