Computational Homogenization based on Statistically Similar Representative Volume Elements

Daniel Balzani

- Introduction/motivation
- Micro-heterogeneous materials
- Direct micro-macro-transition approach
- Construction of Statistically similar RVEs (SSRVEs)

Acknowledgement: • Jörg Schröder, Dominik Brands, Lisa Scheunemann

RG

• DFG for financial support (FOR 797) MICROPLAST

Δ

Simulation of Engineering Problems based on the FE-Method

Task: Compute the deformation field x in a deformable solid as a result of a given loading situation under consideration of boundary conditions

Discretization of physical body in terms of finite elements:

Phenomenological Constitutive Law?

Material-dependent constitutive equations describing the relation between

- Deformation measure: e.g. Finger tensor $\boldsymbol{b} = \boldsymbol{F} \boldsymbol{F}^T$
- Stress measure: e.g. Kirchhoff stress tensor au

 \Rightarrow Reasonable results for approximately homogeneous materials!

 \Rightarrow Construction of phenomenological constitutive laws difficult for microheterogeneous materials due to complex macroscopic material behavior

Example: Fiber-Reinforced Materials

 \Rightarrow Morphology and arrangement of inclusions governs anisotropic properties

Stiffer direction is characterized by an arrow (a), no resistence of fibers under compression

How does the hole deform? movie

 \Rightarrow Appropriate models for anisotropic elasticity exist

Example: Multiphase Steel

Advanced High Strength Steels (AHSS):

- light-weight construction
- enhancement of crash-safety

Material properties:

RG

 lower weight of engineering constructions due to higher strength and formability

Complex microstructure leads to kinematic hardening at macroscale due to interaction of phases

 \rightarrow Appropriate phenomenological model is difficult

Identification of Macroscopic Material Behavior

- $\bullet\,$ In general based on experiments $\rightarrow\,$ elaborate and expensive
- Alternative: FE-calculation of a representative volume element (RVE) of the micro-heterogeneous material

FE-calculation of microscopic boundary value problems

- 1. Discretization of a suitable RVE (e.g. periodic unitcell of periodic microstructure)
- 2. Application of suitable boundary conditions (e.g. displacement-driven bcs, based on macroscopic deformation gradient \overline{F})
- 3. Solution of microscopic boundary value problem ightarrow Distribution of microscopic fields F, au
- 4. Calculation of macroscopic stresses, e.g. as a volume average $\overline{P} = \frac{1}{V} \int_{\mathcal{B}} P \, dV$, $P = \tau F^{-T}$

Direct Incorporation of Microstructure

Microscopic FE-discretization of dual phase steel:

perlite (green).

Binary image

FE-calculation

movie

Direct micro-macro approach:

Microscopic bvp is solved at each macroscopic GP

Goal: Setup of an algorithmically consistent FE²-homogenization scheme!

UNIVERSITÄT DEUSISEBNURG

Selected References

- Ghosh S., Lee K., Moorthy S.; Multiple scale analysis of heterogeneous elastic structures using homogenisation theory and voronoi cell finite element method. *International Journal of Solids and Structures* 1995; **32**:27-62
- Smit R.J.M., Brekelmans W.A.M., Meijer H.E.H.; Prediction of the mechanical behaviour of non-linear heterogeneous systems by multilevel finite element modeling. *Computer Methods in Applied Mechanics and Engineering* 1998; 155:181-192
- Moulinec H., Suquet P.; A numerical method for computing the overall response of nonlinear composites with complex microstructure. *Computer Methods in Applied Mechanics and Engineering* 1998; **157**:69-94
- Miehe C, Schröder J, Schotte J.; Computational homogenization analysis in finite plasticity. Simulation of texture development in polycrystalline materials. *Computer Methods in Applied Mechanics and Engineering* 1999; **171**:387-418
- Miehe C, Schotte J, Schröder J.; Computational micro-macro transitions and overall moduli in the analysis of polycrystals at large strains. *Computational Materials Science* 1999; **16**:372-382
- Feyel F, Chaboche JL.; FE² multiscale approach for modelling the elastoviscoplastic behavior of long fiber SiC/Ti composite materials. *Computer Methods in Applied Mechanics and Engineering* 2000; **183**:309-330

UNIVERSITÄT DUISBURG

Selected References (cont'd)

- Terada K., Kikuchi N.; A class of general algorithms for multi-scale analysis of heterogeneous media. *Computer Methods in Applied Mechanics and Engineering* 2001; **190**:5427-5464
- Kouznetsova V.G., Brekelmans W.A.M., Baaijens F.T.P.; An approach to micro-macro modeling of heterogeneous materials. *Computational Mechanics* 2001; 27:37-48
- Kouznetsova V.G, Geers M.G.D., Brekelmans W.A.M.; Multi-scale constitutive modelling of heterogeneous materials with gradient-enhanced computational homogenisation scheme. *International Journal for Numerical Methods in Engineering* 2002; **54**:1235-1260
- Kouznetsova V.G., Geers M.G.D., Brekelmans W.A.M. ; Multi-scale second order computational homogenization of multi-phase materials: A nested finite element solution strategy. *Computer Methods in Applied Mechanics and Engineering* 2004; **193**:5525-5550
- Ozdemir I., Brekelmans W.A.M., Geers M.G.D.; Computational homogenization for heat conduction in heterogeneous solids. *International Journal for Numerical Methods in Engineering* 2008; **73**:185-204

Selected References (cont'd)

- Verhoosel C.V., Remmers J.J.C., Gutiérrez M.A., de Borst R.; Computational homogenization for adhesive and cohesive failure in quasi-brittle solids. *International Journal for Numerical Methods in Engineering* 2010; **83**:1155-1179
- Temizer I., Wriggers P.; Inelastic analysis of granular interfaces via computational contact homogenization. *International Journal for Numerical Methods in Engineering* 2010; **84**:883-915
- Geers M.G.D., Kouznetsova V.G., Brekelmans W.A.M.; Multi-scale computational homogenization: Trends and challenges. *Journal of Computational and Applied Mathematics* 2010; **234**:2175-2182

Direct Micro-Macro Transition Approach (FE²)

Microscale:

- 1. FE-Discretization of a representative volume element (RVE) and application of e.g. displacement boundary conditions $x=\overline{F}X$ on $\partial\mathcal{B}$
- 2. Solution of non-linear microscopic boundary value problem
- 3. Calculation of macroscopic stresses \overline{P} and tangent moduli $\overline{A} = \frac{\partial \overline{P}}{\partial \overline{F}}$

Suquet [1987], Miehe et al. [...], JS [...], Geers et al. [...], Bertram et al. [...], Wriggers et al. [...], ...

Benefits of FE^2

- A priori micromechanically motivated model
- No phenomenological constitutive law at the macroscale required
- Anisotropic finite plasticity with kinematic hardening at macroscale representable due to interaction of individual phases at the microscale
- Incorporation of mechanical phenomena observed at the microscale such as:
 - ★ Eigenstresses due to microscopic phase transformations or thermal loading
 ★ Graded microscopic material properties or grain boundary effects

Drawback of FE²: Computationally Expensive Method

Microscale

Macroscopic BVP: 20 \times 20 quadrilateral elements with 4 Gauss-points (GPs) each \rightarrow 1 600 GPs = microscopic bvps (to be solved at each macroscopic iteration)

Microscopic BVP: approx. 100000 tetrahedral elements with 5 GPs each $\rightarrow 1 \cdot 10^6$ dofs, 100000 \times 5 \times 10 = 5 $\cdot 10^6$ history variables (for plasticity)

History memory requirements:

1600 \times (5000000 + 1000000) \times 8 byte \approx 76 Gbyte

Computing time: (assume 1 hour for solution of one microscopic bvp)

 $1600\,\times\,1=1600$ h $\approx\,67$ days per macroscopic iteration step

Drawback of FE²: Computationally Expensive Method

Microscale

Macroscopic BVP: 20 \times 20 quadrilateral elements with 4 Gauss-points (GPs) each \rightarrow 1 600 GPs = microscopic bvps (to be solved at each macroscopic iteration)

Microscopic BVP: approx. 100000 tetrahedral elements with 5 GPs each $\rightarrow 1 \cdot 10^6$ dofs, 100000 \times 5 \times 10 = 5 $\cdot 10^6$ history variables (for plasticity)

Possible outcome:

- Strong parallelization of microscopic boundary value problems (BVPs)
- Adaptive method: Only consider $\mathsf{F}\mathsf{E}^2$ at points of interest
- Reduction of memory and computing time of microscopic BVP
 - \rightarrow utilization of simplified RVEs

UNIVERSITÄT

Macroscopic Boundary Value Problem

 $\begin{array}{ll} \text{balance equation:} \\ \mathrm{Div}_{\overline{X}}[\overline{\boldsymbol{P}}] + \rho_0 \ \overline{\boldsymbol{f}} = \boldsymbol{0} & \text{in} & \overline{\mathcal{B}} \\ \text{boundary conditions} \\ \overline{\boldsymbol{u}} = \overline{\boldsymbol{u}}_0 \text{ on } \partial \overline{\mathcal{B}}_u & \text{and} & \overline{\boldsymbol{t}}_0 = \overline{\boldsymbol{P}} \ \overline{\boldsymbol{N}} \text{ on } \partial \overline{\mathcal{B}}_t \end{array}$

The principle of virtual work $\overline{G} := \int_{\overline{\mathcal{B}}} (\text{Div}_{\overline{X}} \overline{P} + \rho_0 \ \overline{f}) \cdot \delta \overline{u} \ dV = 0$ leads to

$$\boxed{\overline{G} := \int_{\overline{\mathcal{B}}} (\delta \overline{F} : \overline{P} - \delta \overline{x} \cdot \rho_0 \overline{f}) \, dV - \int_{\partial \overline{\mathcal{B}}_t} \delta \overline{x} \cdot \overline{t}_0 \, dA = 0 \,, \text{ with } \delta \overline{F} = \text{Grad}_{\overline{X}} \delta \overline{x}}$$

and the linearization (neglecting unconservative loads) is given by

$$\mathsf{Lin}\overline{G} = \overline{G}|_{\overline{\boldsymbol{x}}^{\star}} + \Delta \overline{G} \quad \text{with} \quad \Delta \overline{G} = \int_{\overline{\mathcal{B}}} \delta \overline{\boldsymbol{F}} : \overline{A} : \Delta \overline{\boldsymbol{F}} \, dV$$

Note: At the macroscale the consistent moduli $\overline{A} = \partial_{\overline{F}} \overline{P}$ have to be derived!

UNIVERSITÄT DUISBURG ESSEN

Microscopic Boundary Value Problem

macroscopic stress condition

$$\overline{\boldsymbol{P}} = \frac{1}{V} \int_{\mathcal{B}} \boldsymbol{P} \, dV = \frac{1}{V} \int_{\partial \mathcal{B}} \boldsymbol{t} \otimes \boldsymbol{X} \, dA$$

macroscopic deformation condition

$$\overline{F} = \frac{1}{V} \int_{\mathcal{B}} F \, dV = \frac{1}{V} \int_{\partial \mathcal{B}} x \otimes N \, dA$$

balance of linear momentum: $\operatorname{Div}[\boldsymbol{P}] = \mathbf{0}$ in \mathcal{B}

weak form of balance of linear momentum $G := \int_{\mathcal{B}} \operatorname{Div} \boldsymbol{P} \cdot \delta \boldsymbol{x} \, dV = 0$, leads to

$$G := \int_{\mathcal{B}} \delta \boldsymbol{F} : \boldsymbol{P} \, dV - \int_{\partial \mathcal{B}_t} \delta \boldsymbol{x} \cdot \boldsymbol{t}_0 \, dA = 0 \,, \text{ with } \delta \boldsymbol{F} = \operatorname{Grad}_X \delta \boldsymbol{x}$$

and the linearization

RG

$$\mathsf{Lin}G = G|_{\boldsymbol{x}^{\star}} + \Delta G \quad \text{with} \quad \Delta G = \int_{\mathcal{B}} \delta \boldsymbol{F} : \mathbf{A} : \Delta \boldsymbol{F} \, dV, \quad \mathbf{A} = \partial_{\boldsymbol{F}} \boldsymbol{P}$$

Note: At the microscale suitable boundary conditions have to be defined!

Macro-Homogeneity-Condition

The Macro-Homogeneity condition (Hill criterion)

$$\overline{\boldsymbol{P}}: \dot{\overline{\boldsymbol{F}}} = \frac{1}{V} \int_{\mathcal{B}} \boldsymbol{P}: \dot{\boldsymbol{F}} \, dV$$

is fulfilled by applying the three types of boundary conditions:

(i) Stress bc's
$$t_0 = \overline{P}N$$
on $\partial \mathcal{B}$ (ii) Displacements bc's $x = \overline{F}X$ on $\partial \mathcal{B}$ (iii) Periodic bc's $\begin{cases} x = \overline{F}X + \widetilde{w} \\ \widetilde{w}^+ = \widetilde{w}^-, t_0^+ = -t_0^- \end{cases}$ on $\partial \mathcal{B}$

for the microscopic BVP, $\mathsf{Div}[{m P}]={m 0}$ in ${\mathcal B}$; the weak form of equilibrium reads

$$G := \int_{\mathcal{B}} \delta \widetilde{\boldsymbol{F}} : \boldsymbol{P} \, dV = 0, \quad \Delta G = \int_{\mathcal{B}} \delta \widetilde{\boldsymbol{F}} : \mathbf{A} : \Delta \boldsymbol{F} \, dV, \quad \text{with} \quad \delta \widetilde{\boldsymbol{F}} = \operatorname{Grad} \delta \widetilde{\boldsymbol{w}}$$

Influence of Different Boundary Conditions

(taken from SCHRÖDER [2000], habilitation thesis, report no. I-7, Institut für Mechanik, Lehrstuhl I, Prof. Dr.-Ing. C. Miehe, Stuttgart)

Influence of Different Boundary Conditions

Distribution of stress σ_{11}

 \rightarrow Only the application of periodic boundary conditions results in a stress distribution, which is nearly independent from the relative location of the inclusion.

(taken from SCHRÖDER [2000], habilitation thesis, report no. I-7, Institut für Mechanik, Lehrstuhl I, Prof. Dr.-Ing. C. Miehe, Stuttgart)

DUISBURG

Computation of Algorithmic Consistent Overall Moduli

The incremental constitutive relation at the macroscale reads

$$\Delta \overline{\boldsymbol{P}} = \overline{\mathbb{A}} : \Delta \overline{\boldsymbol{F}} = \left\{ \frac{1}{V} \frac{\partial}{\partial \overline{\boldsymbol{F}}} \int_{\mathcal{B}} \boldsymbol{P}(\boldsymbol{F}) \, dV \right\} : \Delta \overline{\boldsymbol{F}}$$

with the overall (effective) moduli

$$\overline{\mathbb{A}} = \frac{1}{V} \int_{\mathcal{B}} \frac{\partial}{\partial \overline{F}} P(F) \, dV = \frac{1}{V} \int_{\mathcal{B}} \frac{\partial P(F)}{\partial F} : \frac{\partial F}{\partial \overline{F}} \, dV$$

exploiting the decomposition of $m{F}~(m{x}=m{\overline{F}}m{X}+ ilde{m{w}}~
ightarrow~
abla x=
ablam{\overline{F}}m{X}+
ablam{ ilde{w}})$ $m{F}=m{\overline{F}}+m{\widetilde{F}}$

leads with the abbreviation $\mathbb{A} := \partial_F \boldsymbol{P}(\boldsymbol{F})$ to

$$\overline{\mathbb{A}} = \frac{1}{V} \int_{\mathcal{B}} \mathbb{A} \, dV + \frac{1}{V} \int_{\mathcal{B}} \mathbb{A} : \frac{\partial \widetilde{F}}{\partial \overline{F}} \, dV \tag{(*)}$$

Sensitivity of \widetilde{F} with respect to \overline{F} ?

Computation of Algorithmic Consistent Overall Moduli (cont'd)

Consideration of weak form of balance of linear momentum at the microscale

$$G = -\int_{\mathcal{B}} \operatorname{Div} \boldsymbol{P} \cdot \delta \widetilde{\boldsymbol{w}} \, dV = \int_{\mathcal{B}} \delta \widetilde{\boldsymbol{F}} : \boldsymbol{P} \, dV - \int_{\partial \mathcal{B}} \delta \widetilde{\boldsymbol{w}} \cdot \boldsymbol{t} \, dA$$

Linearization of G at an equilibrium state $G=0 \ \rightarrow \ \Delta G=0$

$$\int_{\mathcal{B}} \delta \widetilde{\boldsymbol{F}} : \mathbb{A} : \Delta \boldsymbol{F} \, dV = 0 \ \to \ \int_{\mathcal{B}} \delta \widetilde{\boldsymbol{F}} : \mathbb{A} : \Delta \overline{\boldsymbol{F}} \, dV + \int_{\mathcal{B}} \delta \widetilde{\boldsymbol{F}} : \mathbb{A} : \Delta \widetilde{\boldsymbol{F}} \, dV = 0$$

Ansatz in a typical finite element

$$\begin{split} \widetilde{\boldsymbol{w}} &= \mathbb{N}^{e} \widetilde{\boldsymbol{d}} \,, \qquad \delta \widetilde{\boldsymbol{w}} = \mathbb{N}^{e} \delta \widetilde{\boldsymbol{d}} \,, \qquad \Delta \widetilde{\boldsymbol{w}} = \mathbb{N}^{e} \Delta \widetilde{\boldsymbol{d}} \,, \\ \widetilde{\boldsymbol{F}} &= \mathbb{B}^{e} \widetilde{\boldsymbol{d}} \,, \qquad \delta \widetilde{\boldsymbol{F}} = \mathbb{B}^{e} \delta \widetilde{\boldsymbol{d}} \,, \qquad \Delta \widetilde{\boldsymbol{F}} = \mathbb{B}^{e} \Delta \widetilde{\boldsymbol{d}} \,, \\ &\sum_{e=1}^{nele} \left\{ \delta \widetilde{\boldsymbol{d}}^{T} \left(\boldsymbol{l}^{e} \Delta \overline{\boldsymbol{F}} + \boldsymbol{k}^{e} \Delta \widetilde{\boldsymbol{d}} \right) \right\} = 0 \end{split}$$

with the abbreviations

$$\boldsymbol{k}^{e} = \int_{\mathcal{B}} \mathbb{B}^{eT} \mathbb{A} \mathbb{B}^{e} dV , \quad \boldsymbol{l}^{e} = \int_{\mathcal{B}} \mathbb{B}^{eT} \mathbb{A} dV$$

Computation of Algorithmic Consistent Overall Moduli (cont'd)

Application of standard assembling procedure yields

$$\delta \boldsymbol{D}^T \left(\mathbb{K} \Delta \widetilde{\boldsymbol{D}} + \mathbb{L} \Delta \overline{\boldsymbol{F}} \right) = 0$$

with global stiffness matrix and generalized right hand sides (micro continuum)

$$\mathbb{K} = \bigwedge_{e=1}^{\mathsf{hec}} k^e, \quad \mathbb{L} = \bigwedge_{e=1}^{\mathsf{hec}} l^e$$

solution for incremental fluctuation field

$$\Delta \widetilde{\boldsymbol{D}} = -\mathbb{K}^{-1}\mathbb{L}\,\Delta \overline{\boldsymbol{F}}$$

Inserting in equation (*) and exploiting $\widetilde{F} = \mathbb{B}\widetilde{d}$ yields

$$\overline{\mathbb{A}} = \frac{1}{V} \int_{\mathcal{B}} \mathbb{A} \, dV + \frac{1}{V} \mathbb{L}^T \frac{\partial}{\partial \overline{F}} \Delta \widetilde{D}$$

$$\overline{\mathbb{A}} = \frac{1}{V} \int_{\mathcal{B}} \mathbb{A} \, dV - \frac{1}{V} \mathbb{L}^T \mathbb{K}^{-1} \mathbb{L}$$

Isotropic Finite J₂-Plasticity

Multiplicative decomposition (FLORY [1961], LEE & LIU [1967])

 $F = F^e F^p$ with $F = \operatorname{Grad} x$

Right and left Cauchy-Green tensors

$$oldsymbol{C} = oldsymbol{F}^T oldsymbol{F}^p; \quad oldsymbol{C}^e = oldsymbol{F}^{eT} oldsymbol{F}^p; \quad oldsymbol{C}^e = oldsymbol{F}^{eT} oldsymbol{F}^e = oldsymbol{F}^e oldsymbol{F}^{eT}; \quad oldsymbol{b}^e = oldsymbol{F}^e oldsymbol{F}^{eT}; \quad oldsymbol{b}^e = oldsymbol{F}^e oldsymbol{F}^{eT}; \quad oldsymbol{b}^e = oldsymbol{F}^e oldsymbol{F}^{eT};$$

References: Simo & Ortiz [85], Simo [85,92,...], Simo & Miehe [92], Miehe [92,...], Miehe & Stein [92], Klinkel [2000], de Souza Neto, Peric & Owen [2007], ...

Constitutive Model and Parameters

Finite J_2 -Plasticity:	Parameters:				
Simo & Ortiz [85], Simo [85,92,], Simo & Miehe [92],			matrix		
$oldsymbol{F} = oldsymbol{F}^e oldsymbol{F}^p, \hspace{1em} oldsymbol{b}^e = oldsymbol{F}^e oldsymbol{F}^{eT} = \sum_{A=1}^3 (\lambda_A^e)^2 oldsymbol{n}_A \otimes oldsymbol{n}_A$	E	[MPa]	206,000.0		
	u	[-]	0.3		
$\psi = \psi^{e}(\boldsymbol{b}^{e}) + \psi^{p}(\alpha)$	y_0	[MPa]	200.0		
$\psi^{e} = \frac{\lambda}{2} [\epsilon_{1}^{e} + \epsilon_{2}^{e} + \epsilon_{3}^{e}]^{2} + \mu [(\epsilon_{1}^{e})^{2} + (\epsilon_{2}^{e})^{2} + (\epsilon_{3}^{e})^{2}]$	y_∞	[MPa]	200.0		
	η	[-]	0.0		
with $\epsilon^e_A = \log(\lambda^e_A)$	h	[MPa]	10000.0		
$\psi^p = y_\infty lpha - rac{1}{\eta} (y_0 - y_\infty) \mathrm{exp}(-\eta lpha) + rac{1}{2} h \; lpha^2$					
$oldsymbol{ au} = \kappa \operatorname{tr} \epsilon^e 1 + 2 \mu \operatorname{dev} \epsilon^e$			inclusion		
	E	[MPa]	206,000.0		
$eta = y_\infty + (y_0 - y_\infty) { m exp}(-\eta lpha) + h \; lpha$	u	[-]	0.3		
$\phi = ext{dev}m{\sigma} - \sqrt{rac{2}{3}}eta, rac{1}{2}\mathcal{L}(m{b}^e)m{b}^{e-1} = -\lambda\partial_ au\Phi$					
$\dot{\alpha} = \sqrt{\frac{2}{3}}\lambda$					
$\lambda > 0; \Phi < 0; \lambda \Phi = 0$					

Numerical implementation: KLINKEL [2000]

Example: Cyclic Tension Test

URG

Discretization of Microscopic Problems

Unstruct. mesh Struct. mesh

Gauss-point Method

- Unstructured meshes:
 - * High approximation accuracy of geometry, lower number of elements
 - * Difficult automated mesh generation, partially distorted meshes
- Structured meshes:
 - * Direct mesh generation from micrograph images possible
 - \star Poor approximation accuracy, high number of elements required
- Gauss-point Method:
 - \star Direct mesh generation from micrograph images possible, improved approximation accuracy for geometry and internal fields
- X-FEM: implementation demanding, but high approximation accuracy

Gauss-Point Method: Convergence of Microscopic Fields

Considered Numerical Example:

Macroscopic Uniaxial Tension Test with periodic boundary conditions and triangular elements with quadratic ansatz functions at microscale

 \Rightarrow Approximation accuracy of microscopic fields is comparable for fine meshes

 \Rightarrow Possible improvements for Gauss-point method by local mesh refinement

Gauss-Point Method: Convergence of Macroscopic Response

 \Rightarrow Better convergence behavior for standard method if local refinement is used

UNIVERSITÄT DEUISEBURG

Example: Deep-Drawing of a Hat Profile

Process steps:

UNIVERSITÄT

S B

URG

1. Deep-drawing

2. Unloading process

Example: FE-Discretization of Macro- and Micro-BVP

Macro-FE-Mesh:

- 174 linear quadrilateral elements
- 288 nodes
- plain strain
- penalty contact formulation
- dynamic (Newmark method: $\beta_1 = 1$, $\beta_2 = 3/2$)

Micro-FE-Mesh:

- 102 quadratic triangle elements (plain strain)
- 227 nodes
- periodic boundary conditions

Example: FE²-Simulation of Deep-Drawing and Unloading

UNIVERSITÄT

D

S B

URG

Definitions of an RVE

- Hill (1963): Overall moduli have to be independent of the surface value of traction and displacement, so long as these values are "macroscopically uniform"
- Hashin (1983): RVE should be large enough to contain sufficient microstructural information, but much smaller than macroscopic body
- **Drugan and Willis (1996):** RVE is smallest volume element for which the overall modulus macroscopic representation is sufficiently accurate to represent the mean constitutive response
- Ostoja-Starzewski (2001): RVE is i) unit cell of periodic microstructure, ii) volume possessing statistically homogeneous and ergodic properties
- Stroeven, Askes, and Sluis (2002): Determination of RVE size is not straightforward! It depends on material under consideration and on the structure sensitivity of the physical quantity that is measured

For a more detailed discussion see $\rm ZEMAN$ [2003]

Non-Uniqueness of RVEs

Simplified Microstructures by Substructuring

UNIVERSITÄT DUISBURG

Characterization of Microstructural Morphology

- 4 Basic parameters for the description of each phase:
- \mathcal{P}_V Volume density [-]
- \mathcal{P}_S Surface density $[m^{-1}]$
- \mathcal{P}_M Density of the integral of mean curvature $[m^{-2}]$

$$\mathcal{P}_M = \frac{1}{2V} \int \{\min_{\beta}[\kappa] + \max_{\beta}[\kappa]\} ds$$

with curvature $\kappa(s,\beta)=\frac{1}{r_{s,\beta}}$ and volume of microstructure V

• \mathcal{P}_K - Density of the integral of total curvature $[m^{-3}]$

$$\mathcal{P}_K = \frac{1}{V} \int \min_\beta[\kappa] \max_\beta[\kappa] ds$$

Ohser & Mücklich [2000],

ds

 $r_{s,\beta}$

Matricity as a Characterization Measure

Compute the skeletal lines of each phase in a given microstructure by shrinking the phases to one-pixel lines, then one obtains the graphical illustrations

By calculating the skeletal line lengths of the inclusion and matrix phase S_I and S_M we get the matricity by

$$M_I := \frac{S_I}{S_I + S_M}, \quad M_M := \frac{S_M}{S_I + S_M} \quad \text{with} \quad M_I + M_M = 1$$

For the above microstructure the matricities are $M_I = 0.252$ and $M_M = 0.748$.

Acknowledgement: Professor Schmauder, IMWF Stuttgart

n-Point Probability Functions

Let $D_r(\alpha)$ denote the domain occupied by the *r*-th phase in the particular sample α , then the indicator function reads

$$\chi_r(\boldsymbol{x}, \alpha) = \left\{ egin{array}{cc} 1, & ext{if } \boldsymbol{x} \in D_r(\alpha) \\ 0, & ext{otherwise} \end{array}
ight.$$

The n-point probability function is then defined by the ensemble average

$$S_{r_1,\ldots,r_n}(\boldsymbol{x}_1,\ldots,\boldsymbol{x}_n) = \overline{\chi_{r_1}(\boldsymbol{x}_1,\alpha)\cdots\chi_{r_n}(\boldsymbol{x}_n,\alpha)}$$

and represents the probability that n points $x_1, ..., x_n$ are located in phase r.

First order: $S_r(\boldsymbol{x}) = \overline{\chi_r(\boldsymbol{x}, \alpha)}$, Second order: $S_{rs}(\boldsymbol{x}_1, \boldsymbol{x}_2) = \overline{\chi_r(\boldsymbol{x}_1, \alpha)\chi_s(\boldsymbol{x}_2, \alpha)}$

n-Point Probability Functions

Consider binary image of ergodic microstructure with $N_x \times N_y$ pixels, then the functions of first and second order are computed by

$$S_{r} = \frac{1}{N_{x}N_{y}} \sum_{i=0}^{N_{x}-1} \sum_{j=0}^{N_{y}-1} \chi_{r}(i,j)$$

$$S_{rs}(m,n) = \frac{1}{(i_{M}-i_{m})(j_{N}-j_{n})} \sum_{i=i_{m}}^{i_{M}-1} \sum_{j=j_{n}}^{j_{N}-1} \chi_{r}(i,j)\chi_{s}(i+m,j+n)$$

with $i_m = \max[0, -m]$, $i_M = \min[N_x, N_x - m]$ and j_m , j_M analogous.

For periodic ergodic microstructures, the second-order function is computed by

$$S_{rs}(m,n) = \frac{1}{N_x N_y} \sum_{i=0}^{N_x - 1} \sum_{j=0}^{N_y - 1} \chi_r(i,j) \chi_s((i+m)\% N_x, (j+n)\% N_y)$$

and the number of operations reduces when using the Discrete Fourier transformation (DFT)

$$S_{rs}(m,n) = \frac{1}{N_x N_y} \mathcal{F}^{-1}[\mathcal{F}[\chi_r(m,n)]\overline{\mathcal{F}[\chi_s(m,n)]}]$$

Detection of Periodic Information in Microstructure

Discrete Fourier Transformation (DFT) of microstructure

$$\mathcal{F}(n_x, n_y) = \sum_{k_x=1}^{N_x} \sum_{k_y=1}^{N_y} \exp\left(2\pi i \frac{n_x k_x}{N_x}\right) \exp\left(2\pi i \frac{n_y k_y}{N_y}\right) \chi(k_x, k_y)$$

for $n_x = 1, ..., N_x$ and $n_y = 1, ..., N_y$ and indicator function

$$\chi := \begin{cases} 1, & \text{if } (k_x, k_y) \text{ is in inclusion phase,} \\ 0, & \text{else.} \end{cases}$$

 \mathcal{F} is correlated to 2-point correlation function, see PARZEN [92].

FFTW ("Fastest Fourier Transform in the West")

by Frigo & Johnson [1997]:

First a "plan" is generated by testing several algorithms and computing fastest one for the given hardware system, then FFT's are computed by using "plan"

Spectral Density (SD)

$$\mathcal{P}_{SD}(n_x, n_y) = \frac{1}{2\pi N_x N_y} |\mathcal{F}(n_x, n_y)|^2$$

Detection of Periodic Information in Microstructure

- SD of periodic microstructure and periodic unit cell are identical
- Spectral density (SD) shows characteristic anisotropy directions

Lineal-Path Functions

Let $D_r(\alpha)$ denote the domain occupied by the *r*-th phase in particular sample α , then we introduce the indicator function

$$\lambda_r(\overrightarrow{\boldsymbol{x}_1\boldsymbol{x}_2},\alpha) = \begin{cases} 1, & \text{if } \overrightarrow{\boldsymbol{x}_1\boldsymbol{x}_2} \subset D_r(\alpha) \\ 0, & \text{otherwise} \end{cases}$$

and obtain the lineal-path function by the ensemble average

$$\mathcal{P}_{LP}^r(\overrightarrow{\boldsymbol{x}_1\boldsymbol{x}_2}) = \overline{\lambda_r(\overrightarrow{\boldsymbol{x}_1\boldsymbol{x}_2},\alpha)},$$

which represents the probability that the $\overrightarrow{x_1x_2}$ segment lies in phase r. For periodic ergodic microstructures the lineal-path function is computed by

$$\mathcal{P}_{LP}^{r}(m,k) = \frac{1}{N_x N_y} \sum_{p=1}^{N_x} \sum_{q=1}^{N_y} \lambda_r(p+m,q+k)$$

Examples for Different Statistical Measures

UNIVERSITÄT

. I . S

E N R G

Construction of Statistically Similar RVEs (SSRVEs)

Macroscopic mechanical response is mainly governed by the morphology of the microstructure.

Motivated by POVIRK [1995] we consider a general least-square functional $\mathcal{L}(\boldsymbol{\gamma}) = \sum_{L=1}^{n_{sm}} \omega_{(L)} \left(\mathcal{P}_{(L)}^{real} - \mathcal{P}_{(L)}^{SSRVE}(\boldsymbol{\gamma}) \right)^2 \rightarrow \min_{\boldsymbol{\gamma}}$

where n_{sm} represents the number of statistical measures taken into account.

$$\begin{aligned} \mathcal{L}(\boldsymbol{\gamma}) &= \omega_V \left(1 - \frac{\mathcal{P}_V^{SSRVE}(\boldsymbol{\gamma})}{\mathcal{P}_V^{real}} \right)^2 + \omega_{SD} \frac{1}{N_x N_y} \sum_{m=1}^{N_x} \sum_{k=1}^{N_y} \left(\mathcal{P}_{SD}^{real}(m,k) - \mathcal{P}_{SD}^{SSRVE}(m,k,\boldsymbol{\gamma}) \right)^2 \\ &+ \omega_{LP} \frac{1}{N_x N_y} \sum_{m=1}^{N_x} \sum_{k=1}^{N_y} \left(\mathcal{P}_{LP}^{real}(m,k) - \mathcal{P}_{LP}^{SSRVE}(m,k,\boldsymbol{\gamma}) \right)^2 \end{aligned}$$

Simple Example: Visualization of Objective Function (2 Dofs)

 \rightarrow Surface of objective function is far from being smooth \rightarrow Many local minima exist if more degrees of freedom are considered

 \boldsymbol{u}

x

x

15.5

16 3

x

Optimization by Moving-Frame Algorithm

- Set starting point $M_{0,k}$ and generate n random points in a frame of size (2a)x(2a)
- Evaluate objective function $\mathcal L$ at these points and $M_{0,k}$
- Set the frame center to point of the lowest value of $\mathcal{L} \rightarrow M_{0,k+1}$
- If frame center does not change (e.g. $M_{0,k+1} = M_{0,k+2}$), set $l_{iter} = l_{iter} + 1$ else initialize $l_{iter} = 0$; stop optimization if $l_{iter} = l_{itermax}$

Improved results: • Modified frame size a depending on difference |d| and l_{iter}

• Combination of method with line-search algorithm

Simple Example: Optimization Process

- Target structure: generated by 4 random sampling points defining B-Spline
- Unitcell (to be found): keep 3 points and vary only one sampling point, dimensions of unitcell: 30x30 μm
- Optimization procedure parameters:

size of frame	a	$=5 \ \mu m$
number of "simplex"-points	\mid n	=4
max. number of iterations	$l_{itermax}$	= 50

Study: Real Micrograph of a DP Steel as Target Structure Leading to Macroscopic Kinematic Hardening

Micrograph

FE-discretization

- \bullet 77,641 nodes $\hat{=}$ 155,282 degrees of freedom
- 38,594 six-node triangular elements

 white/red phase: ferrite (matrix)

RG

UNIVERSITÄT

 black/green phase: martensite (inclusion)

Evaluation of the Mechanical Response

Consider a relative error r computed as the deviation of the macroscopic SSRVE stress response from the target structure response at each evaluation point i

$$r_x^{(i)} = \frac{\overline{\sigma}_{x,i}^{\text{real}} - \overline{\sigma}_{x,i}^{\text{SSRVE}}}{\overline{\sigma}_{x,i}^{\text{real}}}, \quad r_y^{(i)} = \frac{\overline{\sigma}_{y,i}^{\text{real}} - \overline{\sigma}_{y,i}^{\text{SSRVE}}}{\overline{\sigma}_{y,i}^{\text{real}}}, \quad r_{xy}^{(i)} = \frac{\overline{\sigma}_{xy,i}^{\text{real}} - \overline{\sigma}_{xy,i}^{\text{SSRVE}}}{\overline{\sigma}_{xy,i}^{\text{real}}}$$

for the macroscopic virtual experiments:

$$\widetilde{r}_j = \sqrt{rac{1}{n} \sum_{i=1}^n [r_j^{(i)}]^2}$$
 with $r_j^{(i)} := r_j \left(rac{i}{n} riangle l_{\max}/l_0 \right)$ and $j = x, y, xy$.

As a comparative measure we define the overall average error

$$\widetilde{r} = \sqrt{\frac{1}{3} \left(\widetilde{r}_x^2 + \widetilde{r}_y^2 + \widetilde{r}_{xy}^2 \right)} \ .$$

Considered Types of SSRVE Construction

UNIVERSITÄT

្ធន

BURG

Construction of SSRVEs based on \mathcal{L}_V , \mathcal{L}_{SD} and \mathcal{L}_{LP}

RG

Comparison of Mechanical Response (\mathcal{L}_V , \mathcal{L}_{SD} , \mathcal{L}_{LP})

SSRVE	$\mathcal{L} \ [10^{-3}]$	$\mathcal{L}_V \ [10^{-5}]$	\mathcal{L}_{SD} [10 ⁻⁴]	$\mathcal{L}_{LP} \ [10^{-5}]$	$n_{\rm ele}$	\widetilde{r}_x [%]	\widetilde{r}_y [%]	\widetilde{r}_{xy} [%]	\widetilde{r} [%]
<u> </u>	39.41	238.05	230.96	139.38	656	1.16 ± 0.29	1.58 ± 0.39	3.34 ± 0.91	2.24
111	8.66	8.82	62.87	22.81	670	0.26 ± 0.20	2.24 ± 0.52	0.41 ± 0.22	1.32
V	4.22	1.42	36.62	5.41	850	1.12 ± 0.35	0.92 ± 0.26	1.10 ± 0.23	1.05
	9.29	14.90	71.31	20.08	582	8.24 ± 2.10	2.10 ± 0.31	7.45 ± 2.87	6.53
IV	3.70	4.33	33.88	2.73	708	2.22 ± 0.80	4.89 ± 1.24	$\textbf{2.43} \pm \textbf{1.22}$	3.40

Errors of the virtual experiments:

Mechanical response and errors

R G Dr

UNIVERSITÄT

ΒU

Bauschinger Effect: Real Structure vs. SSRVE Type V

$$\sigma_I = \sigma_{11}(-0.05)$$

$$\sigma_{II} = \sigma_{11}(-0.05 + 0.002)$$

UNIVERSITÄT

URG

Simulation of a Radially Loaded Circular Disc with a Hole

Adjustment of "simple" constitutive model to experiments is not satisfying \rightarrow Incorporation of microstructural information seems to be necessary

UNIVERSITÄT DUISEBURG

FE²-**Simulation of a Radially Loaded Circular Disc with a Hole** (SSRVE Type V)

FE²-Simulation of a Radially Loaded Circular Disc with a Hole

- reduced radial displacement: $u = 0.0112 \,\mathrm{cm}$ 0.020 - parallel computation (ParFEAP, 8 cores) 0.018 0.016 0.014

 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \text{0.008} \\ \text{0.006} \\ \text{0.002} \\ \text{0.000} \end{array} & \textbf{-} r_{\sigma_{vM}}(\overline{\boldsymbol{x}}) = \left| \frac{\overline{\sigma}_{vM}^{target}(\overline{\boldsymbol{x}}) - \overline{\sigma}_{vM}^{SSRVE}(\overline{\boldsymbol{x}})}{\max_{\overline{\boldsymbol{x}}} \left[\overline{\sigma}_{vM}^{target}(\overline{\boldsymbol{x}}) \right]} \right| \quad \text{with} \quad i = 1 \dots 3 \end{array}$

 \rightarrow Stresses obtained from the target structure and the SSRVE are similar

Target structure:

• 38,594 quadratic triangular elements

- 155,282 dof's
- periodic bc's

- 850 quadratic triangular elements
- 3,534 dof's periodic bc's

Factor of computation period : $\frac{t_{\text{target}}}{t_{\text{SRVE}}} \approx 200$

Acquisition of EBSD-FIB Data

(Cooperation with Prof. Dr. Dierk Raabe, Max-Planck-Institut für Eisenforschung, Düsseldorf)

Crystal orientations

RG

Image quality

2D phase reconstruction

Discretization (8.5 mio. dofs)

3D SSRVEs based on Generalized Ellipsoids

3D SSRVEs are generated with ellipsoidal inclusion based on Superellipsoids

$$\sum_{i=1}^{d} \left(\frac{|\mathbf{v}_i \cdot (\mathbf{x} - \mathbf{x}_c)|}{r_i} \right)^{p_i} = 1$$

Restrictions:

- \Rightarrow exponent p = 2 for convex and smooth ellipsoids
- \Rightarrow equal semiaxis r_2 and r_3

Parametrization of Ellipsoids

S B U R G S E N

Results for SSRVE with 2 Inclusions

UNIVERSITÄT DUISBURG ESSEN

Results for SSRVE with 3 Inclusions

UNIVERSITÄT DUISBURG ESSEN

Target structure Rel. error: Spect. Dens. Lineal Path Relative error min=0 max = 0.4360Projection 10 min=1.7 · 10⁻⁰ 0 3 2 2 3 max=0.0286 0.1 0.2 \times min value \times max value \mathcal{L} [10⁻²] \mathcal{L}_V [10⁻⁴] \mathcal{L}_{SD} [10⁻³] \mathcal{L}_{LP} [10⁻⁴] **SSRVE SSRVE: 5 Ellipsoids** $n_{ m ele}$ 3.072 172.4 12.84 0.5586 5709 5 Ellipsoids Parametrization: $\gamma = [x_c, y_c, z_c, \theta, \varphi, r_0, a]$

Results for SSRVE with 5 Inclusions

Relative error of Mechanical Response

Comparison of Mechanical Results: Target vs. SSRVE

SSRVE	$\mathcal{L} [10^{-2}]$	$\mathcal{L}_V \ [10^{-2}]$	$\mathcal{L}_{SD} \ [10^{-3}]$	$\mathcal{L}_{LP} \ [10^{-5}]$	$n_{\rm ele}$	$ ilde{r}_x$ [%]	$ ilde{r}_z$ [%]	$ ilde{r}$ [%]
2 Ellipsoids	6.484	4.485	12.84	7.139	1889	5.03 ± 2.08	1.49 ± 0.67	3.71
3 Ellipsoids	11.686	0.011	14.454	102.29	3176	4.63 ± 1.95	0.19 ± 0.16	3.28
5 Ellipsoids	3.072	1.724	7.622	5.856	5709	5.04 ± 2.1	1.03 ± 0.50	3.64

Example: Simulation of the Nakajima Test

WAGNER & GRUTTMANN, IJNME(64), (2005)

RG

FE²-Simulation of the Nakajima (on-going work)

Computational Homogenization based on Statistically Similar Representative Volume Elements

Conclusions

- Advantages of direct micro-macro transition approaches (FE²):
 - \rightarrow no complex macroscopic material law required
 - \rightarrow incorporation of microscopic field fluctuations
 - ightarrow indicators for failure initialization provided
 - \rightarrow incorporation of further microscopic mechanical phenomena is rather accessible

RG

- But: method is computationally expensive
- Construction of SSRVEs leads to calculations of significantly improved efficiency
- Three-dimensional SSRVEs for dual-phase steels are enabled based on 3D EBSD/FIB

