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Abstract
The phase-field method is reviewed against its historical and theoretical
background. Starting from Van der Waals considerations on the structure
of interfaces in materials the concept of the phase-field method is developed
along historical lines. Basic relations are summarized in a comprehensive
way. Special emphasis is given to the multi-phase-field method with extension
to elastic interactions and fluid flow which allows one to treat multi-grain
multi-phase structures in multicomponent materials. Examples are collected
demonstrating the applicability of the different variants of the phase-field
method in different fields of materials science.

1. Introduction

‘The phase-field approach has emerged as a method of choice to simulate microstructure
evolution during solidification’, is how the seminal paper of Alain Karma about dendritic alloy
solidification starts, which marks a breakthrough towards quantitative simulation [1]. Today
we can broaden the range of application from solidification to ‘microstructure evolution in
materials processing’ with a wide range of materials and processes, including microstructural
evolution during life time and service. Thereby the level of sophistication competes with the
level of quantitativeness because, particularly in solid state, the mechanisms of transformation
are sometimes not as clear as in solidification and the model formulation becomes difficult.
Nevertheless, today quantitative methods developed in solidification are also used in solid
state and the interest in predictive calculations increasingly supersedes the purely qualitative
demonstration of effects. An exhaustive review of the field is nearly impossible due to the
broad range of applications. Nevertheless a number of excellent reviews which shed light on
the subject from different standpoints are available [2–7]. This review aims to give a tutorial
compilation of the underlying physical ideas and mathematical formulations with explanations
that also make the mathematics comprehensible for non-experts. The focus will lie on the multi-
phase-field (MPF) method as developed by the author. New material, which can help one to
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understand some of the hidden know-how behind published information, is added. Examples
are collected to illustrate different aspects of phase-field modeling. Let us start with a historical
view.

2. Historical background

The principal characteristic of phase-field models is the diffuseness of the interface between two
phases, which are sometimes also called ‘diffuse interface models’. The interface is described
by a steep, but continuous, transition (in real space �x) of the phase field variable φ(�x, t) between
two states. This view of a ‘diffuse interface’ dates back to van der Waals [8], who analyzed
the forces between atoms and molecules. From general thermodynamic considerations he
rationalized that a diffuse interface between stable phases of a material is more natural than the
assumption of a sharp interface with a discontinuity in at least one property of the material1.
A second characteristic of phase-field models is that non-equilibrium states are addressed in
general. The phase field variable distinguishes between different states of a material that
may be identical in all other state variables such as temperature, concentration, pressure, etc.
Therefore, the phase-field variable is an independent state variable. In their famous theory of
phase transitions Ginzburg and Landau [9] used this observation to expand the thermodynamic
state functions, which they called ‘order parameter’, and its gradients. Hillert developed the
first model for spinodal decomposition, where the order parameter was used as a (discrete) field
variable in space and time [10]. Cahn and Hilliard treated the same problem in a continuous
way and used the alloy concentration as the order parameter [11, 12]. All these early models
considered the diffusiveness of the interface as real and a property of the interface that can
be predicted from the thermodynamic functional. I will, however, adopt the pragmatic view
following Langer [13], that the diffuseness of the phase field exists on a scale that is below
the microstructure scale of interest. Thus its thickness can be set to a value that is appropriate
for a numerical simulation. Reference shall also be given to Khachaturyan’s theory of micro-
elasticity [14] that created the basis for a whole school of phase-field models mainly applied
to microstructure evolution in solid state (see [4, 15–18, 20]). I want to start this review with
Kobayashi’s dendrite.

2.1. Kobayashi’s dendrite

The first time I came into contact with ‘phase field’ was at the 1993 McWasp conference in
Palm Coast, Florida (Modeling of Casting, Welding and Advanced Solidification Processes
VII) where Bill Boettinger presented a poster [21] with the newly developed alloy solidification
model (section 2.2) and where the growing of Kobayashi’s dendrite was displayed on a video
screen. Ryo Kobayashi had developed a scheme to solve Stefan’s problem of solidification
of a pure substance in an undercooled melt by replacing the sharp interface moving boundary
problem by a diffuse interface scheme [22, 23]. This scheme has a striking simplicity and turned
out to be identical to the theoretical concepts we nowadays call phase field. The scheme consists
of two partial differential equations, the diffusion equation for the temperature field T (�x, t)

and the evolution equation of an indicator function, the phase field φ(�x, t) that distinguishes
the phases. φ = 1 indicates the solid, φ = 0 the liquid and a smooth transition of φ(�x, t)

between 1 and 0 indicates the solid–liquid interface. In Kobayashi’s notation the phase-field

1 He examined the density change between a liquid and its vapour.
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Figure 1. 2D simulation of dendritic growth of a pure substance in a highly undercooled melt,
starting from a small seed at the bottom of the domain. Reproduced with permission from [22],
© Elsevier 1993.

Figure 2. 3D simulation of dendritic growth of a pure substance in a highly undercooled melt.
Reproduced with permission from [23], © Elsevier 1994.

equation and the temperature equation read

τ φ̇ = ε∇2φ + γφ(1 − φ)
(
φ − 1

2 + m0(Tm − T )
)
, (1)

Ṫ = ∇(λT ∇T ) +
L

cp

φ̇, (2)

where τ is a relaxation constant setting the time scale, ε and γ are proportional to the interfacial
energy that will in general depend on the interface orientation with respect to the orientation
of the crystal (see section 3.2), Tm is the equilibrium temperature between solid and liquid of
a pure substance (melting temperature). m0 is proportional to the enthalpy of fusion L. λT

is the thermal diffusivity and cp the heat capacity. These two equations are simple parabolic
differential equations from their structure. However, both equations are closely coupled. φ̇

in equation (1) depends on the temperature T and Ṫ in equation (2) depends on φ̇. The
system of equations thus becomes highly nonlinear. It is this coupling that will produce the
unexpected self-organizing patterns, which correspond to dendritic patterns found in nature.
Additionally, the role of interface energy on the mode selection in dendritic growth is reflected
by the equations. Figure 1 shows three time steps of a calculated dendritic structure in 2D.
The first 3D dendritic structures (figure 2) that show striking similarity to real structures could
already be calculated in 1994. Only the scale selection could not yet be controlled by the first
schemes (see section 3.3).

Furthermore, it can be seen that equations (1) and (2) are derived from a thermodynamic
functional using relaxational dynamics [24]. In this specific case, we are seeking an equation
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that is compatible with the principle of entropy maximization, appropriate for adiabatic systems
with temperature variations as derived by Wang et al [25]. The entropy functional S is defined
by the integral of the entropy density s over the domain �. It is related to the internal energy
density e and the free energy density f in the notation of (1) and (2)

S =
∫

�

s =
∫

�

e − f

T
, (3)

e = cpT + L(1 − φ), (4)

f = 1

2
ε(∇φ)2 +

γ

4
φ2(1 − φ)2 − L

Tm − T

Tm
6

(
φ2

2
− φ3

3

)
. (5)

Here, for simplicity the internal energy of the solid is assumed to be linearly dependent on
T with constant specific heat cp. The governing equations for T and φ are derived consistently
with the principle of entropy production Ṡ > 0 as explained in detail in [25]

τ̃ φ̇ = − δ

δφ

(∫
�

f

T

)
T

= − 1

T

[
∂f

∂φ
− ∇ ∂f

∂∇φ

]
, (6)

ė = −∇MT ∇ δ

δe

(∫
�

e

T

)
φ

= −∇
[
MT ∇ 1

T

]
. (7)

Inserting the energy model (4) into (7) we obtain the heat conduction equation

ė = cpṪ − Lφ̇ = ∇ MT

T 2
∇T , (8)

which is equivalent to equation (2) with λT = MT /cpT 2. The phase-field equation (1)
also follows directly from (6) inserting the free energy model (5) with τ = T τ̃ and
6(L/Tm) = γm0.2

τ̃ φ̇ = 1

T

[
ε∇2φ − γφ(1 − φ)

(
1

2
− φ

)
+ 6L

Tm − T

Tm
φ(1 − φ)

]
. (9)

The thermodynamically consistent derivation of phase-field models is of special
importance, because it enables the correlation of the model parameters with each other, as
well as the establishment of a sound theoretical background in thermodynamics.

To conclude this section the special form of the free energy density given in (5) shall
be discussed. The first term is the gradient energy contribution which is the only non local
contribution in the functional. It is sensitive to variations in the phase-field variable, i.e. to
interfaces. The second term is the famous double well potential fDW = γφ2(1 − φ)2 that sets
the minima of the free energy at φ = 0 and φ = 1 with an activation barrier of height γ /16.
Both terms, the gradient and the potential term, contribute in equal parts to the interface energy,
as is shown in the appendix. The last term in equation (5) proportional to L shifts the energy
minimum at φ = 1 up or down depending on the deviation of the interface temperature from the
melting temperature T −Tm. For T = Tm both phases have the same free energy and (besides
curvature driven melting) no phase change will occur. Any deviation of the temperature from
the melting temperature will favour either the solid or the liquid. However, the temperature in
our problem is not constant but depends on the evolution of φ via the last term Lφ̇ in (2). This
makes the problem so interesting.

2 One has to apply the standard rules of differentiation for the partial derivatives of the functionals with respect to
the field variables. ∇φ in (6) is to be used as a single variable.

4



Modelling Simul. Mater. Sci. Eng. 17 (2009) 073001 Topical Review

2.2. The WBM model of alloy solidification

The next step towards application of phase-field models in materials science was the alloy
solidification model by Wheeler, Boettinger and McFadden in 1993. They combined the
Cahn–Hilliard model for spinodal decomposition and early phase-field models by Langer [13],
Collins and Levine [26], Caginalp [27] and Kobayashi [22]. Their basic approach is to
construct a generalized free energy functional that depends on both concentration and phase by
superposition of two single-phase free energies and weighting them by the alloy concentration.
The free energy density equivalent to equation (5) for a binary alloy with concentration c of
atoms A and (1 − c) of atoms B reads

f = 1

2
ε(∇φ)2 + cf A

DW + (1 − c)f B
DW − mAB(c, T )

(
φ2

2
− φ3

3

)

+
RT

vm
[c ln c + (1 − c) ln(1 − c)] (10)

f
A/B
DW = γ A/Bφ2(1 − φ)2, (11)

where f
A/B
DW are the potentials of the pure crystals A and B, respectively, vm the molar volume

and R the gas constant. The whole potential is now a function of both φ and c and reduces
to that of a pure substance for c = 0 and c = 1. It has the same form as for pure systems
but contains the concentration-dependent parameters. By comparing it to (5) we can define
γ AB(c) = 4[cγ A + (1− c)γ B] and mAB(c, T ) = m0[cT A

m + (1− c)T B
m −T ] with a constant m0

related to the latent heat of the alloy. The thermodynamic model represented by this potential
represents a lens-shaped phase diagram which describes perfectly miscible substances, known
as ideal solutions, well. Minimization of the potential will automatically lead to the partitioning
of the solute between the phases under the constraint of concentration conservation. From the
principle of minimization of the free energy one derives.

τ φ̇ = −
[

∂f

∂φ
− ∇ ∂f

∂∇φ

]

= ε∇2φ − γ ABφ(1 − φ)

(
1

2
− φ +

mAB(c, T )

γ AB

)
, (12)

ċ = ∇Mcc(1 − c)∇ ∂f

∂c
= ∇ McRT

vm
∇c + ∇Mcc(1 − c)∇(fB − fA). (13)

With D = McRT /vm one recovers the diffusion equation in Fick’s approximation but
augmented by a term proportional to ∇(fB − fA). This accounts for the partitioning of
the solute in the interface. The model is however not restricted to this special form of the
free energy functional. A generalized model can also be a mixture in φ of single-phase free
energies (see, e.g. [28])

f̃ = 1
2ε(∇φ)2 + φfα(c) + (1 − φ)fβ(c) (14)

where the free energies fα/β(c) in the bulk phases α or β, respectively, are convex functions
in c. The important point of the model is that c is treated as continuous over the interface
in the spirit of the Cahn–Hilliard model. This implies that the interfacial energy becomes
intrinsically dependent on the local concentration and cannot be treated as an independent
entity (see discussion in [29, 30]). A modification of the original WBM model by Warren
et al [31] was used to simulate first dendritic structures in alloy solidification in 1995. This
marks a breakthrough towards the application on real materials. Other important studies by
the authors deal with solute trapping in rapid solidification [32, 33] and the effect of surface
energy anisotropy in phase-field models [34, 35].
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3. Theoretical background

In this section, some basic relations that help one to understand the underlying physics and
which are indispensable for those who want to become active in developing phase-field models
are reviewed. Thereafter the MDF model will be outlined.

3.1. Gibbs–Thomson limit

The notation in the previous section was adapted to the notation in the classical publications
about phase-field models. Close to equilibrium, however, the model parameters can be related
to physically measurable quantities like interfacial energy σ , interfacial mobility µ, deviation
from thermodynamic equilibrium �g and interfacial width η [36]. In the appendix these
relations are derived from the traveling wave solution of the phase-field equation for three
forms of the potential function: the so-called double well, the double obstacle and the top hat
potential. The double obstacle will be used, as it has advantages in numerical calculations and
is used in the latest version of the MPF method [37]. In the physical notation the free energy
density and phase-field equation for 0 � φ � 1 become3

f =
{

σ

η

[
(η∇φ)2 + π2φ(1 − φ)

]
+ 2πhDO(φ)�g

}
4

π2
(15)

φ̇ = µ

[
σ

η

(
η∇2φ +

π2

η

(
φ − 1

2

))
− π

η

√
φ(1 − φ)�g

]
(16)

with the 1D steady state solution of a traveling wave with velocity vn = µ�g, see appendix
equation (67)

φ(x, t) = 1

2
− 1

2
sin

(
π

η
(x − vnt)

)
. (17)

The notation of f in equation (15) is chosen to underline that in a phase-field model the
interface is treated as a volume with excess energy density σ/η. The expression in the square
brackets is a dimensionless measure of the structure of the interface. hDO is a monotonous
weighting function as defined in the appendix equation (64). The derivative of this function is
proportional to the gradient of φ, ∇φ = (π/η)

√
φ(1 − φ). Now we face the paradox that in the

phase-field equation (16) the first two terms proportional to η∇2φ and (π2/η)(φ − 1
2 ) diverge

in the sharp interface limit η → 0 as 1
η

4. To resolve this paradox we follow Caginalp [27] by
expanding the Laplacian of a spherically symmetric problem in the radius coordinate ρ

η∇2φ(x) = η

(
∂2φ

∂ρ2
+

1

ρ

∂φ

∂ρ

)
(18)

= π2

η

(
1

2
− φ

)
+

π

ρ

√
φ(1 − φ) + O

(
η

ρ2

)
. (19)

Inserting this into (16) shows that the leading divergent terms ∼ 1/η exactly cancel out and
the second term in (18) becomes the leading contribution proportional to the mean curvature
(1/ρ) = κ . This is of course not a mere coincidence, but a consequence of the steady state
solution. If the phase-field contour deviates from the steady state contour besides having a
smooth curvature κ , the divergent terms will not cancel out and the resulting contributions
will force the contour towards the steady state profile. This correction will be stronger the

3 The double obstacle potential φ(1 − φ) is unbounded to −∞ for φ < 0 and φ > 1. Therefore a cutoff or obstacle
against unphysical values of φ at φ = 0 and φ = 1 has to be included—hence the name.
4 Note that ∇2φ ∼ 1/η2.
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smaller η is. The phase field equation (16) or (1) therefore acts in two ways: firstly to stabilize
the phase-field contour in the normal or radial direction through the interface, and secondly
to evaluate the (mean) curvature of the interface. We find to lowest order of an expansion in
ηκmax � 1, where 1

κmax
is the smallest length to be resolved, the equivalence to the Gibbs–

Thomson equation

vn = φ̇|∇φ|−1 = φ̇η

π
√

φ(1 − φ)
= µ(σκ − �g). (20)

This limit is called the Gibbs–Thomson limit of the phase-field method where simulation
results are independent of the interface width, which now can be scaled for numerical
convenience. Spurious effects will, however, arise in the interface if the phase-field equation
is coupled to a transport equation and the driving forces �g are not constant. This will be
shown in the section 3.3 after the effect anisotropy has been discussed briefly.

3.2. Anisotropy and the ξ -vector

Anisotropy of the interfacial energy and mobility reflects the atomistic crystallographic
structure of interfaces in materials in a mesoscopic description. This anisotropy is weak
for solid–liquid interfaces in most metallic materials (see section 4.1) or strong, leading to
faceted interface structures as in silicon [38]. There is definitely an additional amplification
by torque effects on the interface as described by Herring [39]. This torque is due to the fact
that the minimum state of an interface is not only controlled by its curvature solely but by the
variation of curvature and surface energy as a product. If the interfacial energy is a simple
function of one angle θ the curvature undercooling in the Gibbs–Thomson equation becomes

σκ → (σ + σ ′′)κ, (21)

where σ ′′ is the second derivative of σ with respect to θ . For the solid–liquid interface of a metal
with cubic anisotropy the interfacial energy is mostly approximated σ(θ) = σ0(1 + δ cos(4θ))

with a small anisotropy δ of the order of a few percent. It is easy to calculate that
σ ′′ = −16σ0δ cos(4θ), i.e. the torque becomes the dominating contribution in the Gibbs–
Thomson equation, more than one magnitude higher than the interfacial energy anisotropy.
Therefore, even metals with a small anisotropy will develop a noticeable anisotropy in the
equilibrium and growth shape. Generally the interface energy will be a function of the
interface normal with respect to the solid phase �n = ∇φ/|∇φ| in solidification. In solid–
solid transformation, it is, in addition, a function of the misorientation of the adjacent solid
phases. As the latter can be considered to be independent of the solution of the phase field we
shall set it constant when only one interface between two phases is considered. The variation
of the gradient energy term in the phase-field equation (6) in the physical notation (15) with
respect to ∇φ then becomes

∇ ∂

∂∇φ

σ(�n)

η

[
(η∇φ)2 + π2φ(1 − φ)

] = 2ησ(�n)∇2φ + ∇ξ(�n)

[
(η∇φ)2 + π2φ(1 − φ)

]
η

,

(22)

where ξ = ∂σ(�n)/∂∇φ is the so-called ξ -vector representing the Herring torque generalized
to the framework of the phase-field model [35]. The second term in equation (22) contributes
strongly in anisotropic systems and triggers preferential growth of an interface in its weak
direction. Although this contribution is essential for all physical systems, it will be omitted
in the following derivation for readability. It does not interfere with the general model
development strategy and can be added in straightforward manner.

7
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3.3. The thin interface limit

As pointed out above, most applications of the phase-field method deal with the coupling
of the motion of the interface to a long-range transport process, e.g. diffusion of the solute
caused by solute redistribution at the interface during alloy solidification. As the velocity of the
interface depends on the local supersaturation and thereby on the concentration profile within
the interface, the driving force �g = �g(c(�x)) will not be constant if there is a significant
concentration gradient on the scale of the interface width η used in the numerical calculation.
One may divide the local supersaturation or, respectively, the local driving force �g into
two components: a constant part �gi which represents the kinetic driving force acting on
the atomistic interface, and a varying part �g̃ that stems from the diffusion gradient in the
bulk material apart from the atomistic interface. The latter is, of course, physically correct,
describing the bulk undercooling, but it should not contribute to the motion of the interface in the
sense of the Gibbs–Thomson relation (20). If the interface width used in a numerical calculation
exceeds the atomistic width, a scheme is needed to separate both of these contributions. This
was developed by Karma and Rappel in 1996 [40, 41] for solidification of pure substances
and later generalized by Karma and coworkers to alloy solidification [1, 42, 43]. Recently it
was generalized to multicomponent alloys by Kim [44]. The following description ist based
on Kim’s deduction, but uses the double obstacle potential for consistency with the MPF
model. The phase-field and liquid diffusion equation for a solid–liquid phase transition in a
multicomponent alloy become (diffusion in solid is neglected)

φ̇ = µeff

[
σ

(
∇2φ +

π2

η2

(
φ − 1

2

))
+

π

η

√
φ(1 − φ)�g

]
(23)

ċi = ∇M
ij

l (1 − φ)∇ ∂f c

∂c
j

l

+ ∇Aiφ̇�n. (24)

µeff is an effective interface mobility as derived below. The chemical free energy
f c = φfs({ci

s}) + (1 − φ)fl({ci
l }) is treated as a function of the phase concentrations ci

s and ci
l

in solid and liquid which sum up to the mixture concentration ci = φci
s + (1 − φ)ci

l [29]. The
sum convention over double composition indices i is used for readability. The concentrations
are vectors in the space of the components i of a multicomponent alloy. {Mij

l } is the mobility
matrix in liquid. The last term in equation (24) is the gradient of the so-called anti-trapping
current j i

A = Aiφ̇�n introduced by Karma [1] to compensate for asymmetrical fluxes in the
interfacial region if the diffusivity within the two phases differs significantly. It is directed
in normal direction �n = ∇φ/|∇φ| and proportional to the local phase change φ̇. The anti-
trapping function Ai = Ai(ci, φ) will be determined by the condition of a vanishing potential
jump as explained in figure 3. The derivation is only sketched here and the reader is referred
to the original literature [1, 42, 43, 44]. In steady state motion of a planar solidification front
(1D) with velocity vn in positive direction equation (24) can be expressed as

− vn

dc

dx
= d

dx
Dij

e (1 − φ)
dc

j

l

dx
− d

dx
Aivn

dφ

dx
. (25)

Integration over the whole system yields

vn(c
i
s − ci) = D

ij

l (1 − φ)
dc

j

l

dx
− vnA

i dφ

dx
, (26)

vn(1 − φ)(ci
s − ci

l ) ≈ D
ij

l (1 − φ)
dc

j

l

dx
+ vnA

i π

η

√
φ(1 − φ). (27)
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Figure 3. Sketch of the solute profile in the interface. The straight lines indicate extrapolations
from the edge of the interface into the center. Without correct anti-trapping there will be a jump in
the extrapolated concentrations which corresponds to a potential jump at the interface and has to
be avoided. Reproduced with permission from [44], © Elsevier 2007.

The solid concentration ci
s is constant for vanishing solid diffusion. D

ij

l =
Mik

l (∂2f c/∂c
j

l ∂
k
l ) is the diffusion matrix in liquid and the gradient of the phase-field contour

was approximated by the steady state solution (17) or (67). Inverting this we have the
concentration gradient

dci
l

dx
= vn[Dij

l ]−1

[
(cj

s − c
j

l ) − Ai π

η

√
φ(1 − φ)

(1 − φ)

]
. (28)

It can then be shown (see equation (37) in [44]) that a steady state solution of the
concentration profile is found if the concentration gradient in liquid is proportional to the
phase field of liquid (1 − φ)

dci
l

dx
= (1 − φ)

dci
l

dx
|φ=0 = vn(1 − φ)[Dij

l ]−1(ci
s − ci

l ). (29)

This means nothing else than that the local fluxes per density of the liquid phase are
constant and proportional to the velocity of the front times the concentration jump between
the phases. This condition can now be used to solve (28) and (29) for Ai and we then arrive at
the final diffusion equation with anti-trapping current

ċi = ∇M
ij

l (1 − φ)∇ ∂f c

∂c
j

l

+ ∇ η

π

√
φ(1 − φ)(ci

s − ci
l )φ̇�n. (30)

The anti-trapping current in the diffusion equation compensates the asymmetry in fluxes
on both sides of the interface in the limit of vanishing diffusivity in one phase. Historically
this was the second step in the development of the thin interface limit. The first step had
the decomposition of the driving force in interface undercooling and bulk undercooling in the
phase-field equation. Like the diffusion equation we transform the phase-field equation in the
moving frame system in steady state and 1D approximation

− vn

dφ

dx
= µeff π

η

√
φ(1 − φ)�g ≈ −µeff dφ

dx
�g. (31)

Integration over x yields

vn

∫ ∞

−∞

dφ

dx
dx = µeff

∫ ∞

−∞
�g

dφ

dx
dx = µeff

[
�gi −

∫ ∞

−∞
φ

d�g

dx
dx

]
. (32)
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The partial integration has split the driving force into the constant contribution �gi ,
which is considered to be the physical contribution acting on the interface and the varying
contribution proportional to the gradient of �g. In the dilute solution limit we may approximate
�g = �S(Tm + mi

lc
i
l − T ), with the liquidus slope mi

l < 0. For constant temperature and
using (29) for the concentration gradient we can evaluate the integrals

d�g

dx
= �Smi

l

dci
l

dx
= �Smi

lvn(1 − φ)[Dij

l ]−1(cj
s − c

j

l ), (33)

vn = µeff
{
�gi − vn

η

8
�Smi

l [D
ij

l ]−1(cj
s − c

j

l )
}

. (34)

The spurious driving force due to the concentration gradient in the interface is within the
given approximation proportional to the interface velocity vn. Consequently, one can handle
it as a systematic perturbation and define an equivalent to the Gibbs–Thomson equation (20)
with an effective mobility µeff

vn = µeff

1 − µeff η

8 �Smi
l [D

ij

l ]−1(c
j
s − c

j

l )
�gi = µ�gi. (35)

The last equation is simply the definition of the physical mobility µ as the proportionality
constant between velocity and (physical) driving force. It can be inverted to define the effective
mobility µeff = µ/(1 + µ

η

8 �Smi
l [D

ij

l ]−1(c
j
s − c

j

l ))
5. Having the effective mobility one can

reproduce the physically correct relation (35) by solving relation (31) which evaluates the
spurious local driving force �g. Whereas in the sharp interface limit η → 0 the correction
vanishes and µeff → µ, it dominates for finite η and large physical mobilities µ. For µ → ∞
the effective mobility becomes independent of µ and the effect of anisotropic attachment
kinetics that would be reflected by an anisotropy of µ is lost in the equation. This case
corresponds to a phase transformation under diffusion control, where attachment is considered
to not be rate determining and the neglect of its anisotropy should be tolerable. There may,
however, be cases of strong anisotropy that can only be handled with a very high resolution of
the interface.

3.4. The MPF model

The previous descriptions considered dual phase change problems, basically a solid–liquid
phase change. The austenite to ferrite transformation in steel and other solid phase changes
can also be treated in this framework [45]. Early phase-field models for a three-phase change
problem, were developed by Karma [46] and Wheeler et al [47] for eutectic systems. They
consist of a dual phase-field model (for solid and liquid) superposed by a Cahn–Hilliard
model for demixing in the solid. Thus they are restricted to a three-phase transformation.
To be applicable to an arbitrary number of different phases or grains of the same phase, but
distinct by their orientation, the so-called MPF model was developed [29, 37, 48–50]. Each
grain α distinct from others either by its orientation or phase (or both) is attributed by its
individual phase field φα . Historically this can be seen as a vector-order-parameter model in
Landau’s sense [9]. A similar model to the MPF was developed contemporaneously by Fan
and Chen [51, 52]. Later Kobayashi and Warren [53] developed a model that uses the grain

5 As is always the case, the signs are important. With negative Ml and cs − cl the denominator of µeff is always
finite and positive. The denominator in (35) will however approach 0 if µeff (η/8)�Smi

l [D
ij

l ]−1(c
j
s − c

j

l ) → 1,
which corresponds to the situation of infinite physical mobility. However, in a numerical simulation one has to be
careful that µeff does not exceed this value. Otherwise the sign of the physical mobility becomes negative which will
automatically lead to oscillations in the calculation.
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orientation as an order parameter and allows simulating of solidification, grain growth and
grain rotation in a multi-grain structure. The reader is referred to the respective literature.

We start from a general free energy description separating different physical phenomena,
interfacial f intf , chemical f chem and elastic energy f elast

F =
∫

�

f intf + f chem + f elast (36)

other contributions like magnetic and electric energy may be added in future applications.

f intf =
∑

α,β=1,..,N,α 
=β

4σαβ

ηαβ

{
−η2

αβ

π2
∇φα · ∇φβ + φαφβ

}
, (37)

f chem =
∑

α=1,..,N

h(φα)fα(ci
α) + µ̃i(ci −

∑
α=1,..,N

φαci
α) (38)

f elast = 1

2

{ ∑
α=1,..,N

h(φα)(ε̄α − ε̄∗
α − ci

αε̄i
α) ¯̄Cα(ε̄α − ε̄∗

α − cj
αε̄j

α)

}
. (39)

Again I use the sum convention over double indices of the components i. N = N(x) is
the local number of phases and we have the sum constraint6∑

α=1,..,N

φα = 1. (40)

σαβ is the energy of the interface between phase—or grain—α and β. It may be anisotropic
with respect to the relative orientation between the phases. ηαβ is the interface width and will
be treated equal for all interfaces in the following. The chemical free energy is built from the
bulk free energies of the individual phases fα(�cα) which depend on the phase concentrations
ci
α . µ̃i is the generalized chemical potential or diffusion potential of component i introduced as

a Lagrange multiplier to conserve the mass balance between the phases ci = ∑
α=1,..,N φαci

α .
The elastic part of the free energy is defined based on the elastic properties and strain related
to the different phases: the total strain tensor ε̄α in phase α, the eigenstrain of transformation
ε̄∗
α , the chemical expansion of component i ε̄i

α in Vegard approximation and the elasticity

matrix ¯̄Cα .
For N = 2 the interfacial energy reduces to the one for the dual phase field (15) with

φ2 = 1−φ1 and ∇φ2 = −∇φ1. Although the double well potential was used in the interfacial
energy in the original version of the MPF [48], due to several advantages the double obstacle
potential seems preferential today. It has two main advantages. Firstly, the phase-field variables
converge to 0 and 1 within the prescribed interface width η, which makes it easier to store
the interface information and to reduce memory in a numerical calculation. The software
MICRESS [54] based on the model, stores only relevant information in regions characterized
as bulk phases, interface, triple or multiple junctions. Secondly, the double obstacle potential
suppresses the spreading out of multiple junctions into the interface region, as known from
the double well potential. The latter is cubic in the phase-field variable, which energetically
favors multiple junctions. This can be easily demonstrated by considering the center of a dual
interface in contact with a triple junction, or equivalently the nucleation of a third phase φ3 in
the center of an interface. With φ1 = φ2 = 1

2 (1 − φ3) the potential energy fn, where n = 1

6 This constraint is not included in Fan and Chen’s model [52].
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stands for the double obstacle and n = 2 for the double well, becomes

fn = φn
1 φn

2 + φn
1 φn

3 + φn
2 φn

3

= 1

4
(1 − φ3)

2n + (1 − φ3)
nφn

3 (41)

= 1

4
+

φ3

2
+ O(φ2

3) for n = 1

= 1

4
− φ3 + O(φ2

3) for n = 2. (42)

In the limit φ3 → 0 df1/dφ3 is positive for the double obstacle, i.e. there is a natural barrier
against growth of a third phase. For the double well df2/dφ3 is negative, i.e. the growth of the
third phase reduces the potential energy and the dual interface becomes intrinsically unstable.
Then a strong counter-energy is needed to suppress spreading out of the multiple junctions.
An alternative approach to avoid the given problem is described in [55, 56], where a special
type of a potential function that guarantees the stability of dual interfaces is constructed. This
formulation, however, is restricted to triple junctions and will be difficult to generalize.

The MPF equations are derived (for details see [49])

φ̇α = −
∑

β=1,..,N

π2

8ηN
µαβ

(
δF

δφα

− δF

δφβ

)
. (43)

This is a superposition of dual phase changes between pairs of phases. µαβ is defined
individually for each pair of phases and can be treated in the thin interface limit replacing it
by the effective mobility (35). Inserting the free energy (36) to (39) we calculate explicitly

φ̇α =
∑

β=1,..,N

µαβ

N




∑
γ=1,..,N

[σβγ − σαγ ]Iγ +
π2

8η
h′�gαβ


 , (44)

Iγ = ∇2φγ +
π2

η2
φγ . (45)

Iγ is the generalized curvature term. For anisotropic interfacial energies the respective
torque term has to be added (see section 3.2). �gαβ comprises the derivative of the chemical
free energy and the elastic free energy with respect to the phase-field variables. There arises,
however, a consistency problem that remains unsolved to date: how to formulate an appropriate
contour function h(φα) for multiple junctions. A thermodynamically consistent form is
the unity h(φα) = φα with h′ = 1. However, this disturbs the traveling wave solution of
the double obstacle potential, as described in detail in the appendix. A generalization of the
contour function hDO (64) which is suitable for multiple junctions and does not violate the sum
constraint

∑
α=1,..,N h(φα) = 1 hardly seems possible. In most simulations using the MPF

the so-called antisymmetric approximation, which resigns from thermodynamic consistency
at the multiple junctions, is thus used.

φ̇α =
∑

β=1,..,N

µαβ

{
σαβ

[
φβ∇2φα − φα∇2φβ +

π2

2η2
(φα − φβ)

]
+

π

η

√
φαφβ�gαβ

}
. (46)

The chemical free energy (38) in the MPF is evaluated from the phase concentration ci
α

in the individual phases α. In the interface region, the concentration has to be split into the
phase concentrations and an extra condition is needed to fix the additional degrees of freedom.
In the original model [29], a symmetric deviation from equilibrium in each pair of phases was
used. Kim et al [30] proposed the condition of equal diffusion potential δf /δci

α of pairs of
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phases in the interface, called a quasi-equilibrium condition. It only implies the equality of
the chemical potential up to a constant factor which defines the chemical driving force on the
interface. This condition is also used in the thermodynamically consistent derivation of the
actual MPF model [37]. The splitting of the concentrations into phase concentrations and
the evaluation of the quasi-equilibrium condition is computationally demanding. However, it
must be considered indispensable for quantitative simulations in the thin interface limit. An
extrapolation scheme of the local quasi-equilibrium condition for computational efficiency is
presented in [37].

For a multicomponent system, a set of k diffusion equations for all solute components,
which are generally not independent but linked by cross terms, is required. These equations
are derived for the conserved compositions ci from the free energy functional by a relaxation
approach.

ċi + �u · ∇ci
liquid = ∇




N∑
α=1

φαMij
α ({cj

α})∇ δF

δc
j
α

+
N∑

α,β=1

j i
αβ




= ∇



N∑
α=1

φα[Dij
α ∇cj

α − ∇Mij
α ε̄j

α s̄α] +
N∑

α,β=1

j i
αβ


 , (47)

j i
αβ = bη

√
φαφβ

(
(cj

α(x) − c
j

β(x))
D

ij
α − D

ij

β

D
ij
α + D

ij

β

)
φ̇ · φβ∇φα − φα∇φβ

|φβ∇φα − φα∇φβ | . (48)

The diffusion equation is a straightforward extension of the single component dual
phase diffusion equation (30) with the diffusion matrices in the individual phases D

ij
α =

Mik(∂2F/∂ck∂cj ) considering multiple components, cross effects between the components
and diffusion in all phases. Advective transport in the liquid phase φliquid is considered with
velocity �u. The anti-trapping flux j i

αβ is an extrapolation to diffusion in all phases as a
superposition of the fluxes in the different interfaces. It reduces in the limit of vanishing
diffusion in one phase or equal diffusion in both phases to the standard expression. It is easy
to check that for non-vanishing diffusion in all phases the given anti-trapping current is a
superposition of a symmetric model (equal diffusion in both phases, where no anti-trapping
current is needed) and the one-sided model which neglects diffusion in one of the phases.
Weighting the diffusivities in the given way results in the correct diffusion in the phase mixture.
The second term in the diffusion equation proportional to the gradient of the hydrostatic stress

s̄α = ¯̄Cα(ε̄α − ε̄∗
α − ε̄i

αci) is also of note. This stress drives and additional diffusion flux if the
Vegard coefficient ε̄i

α of the respective phase and component is nonzero.
The mechanical equilibrium equation follows in quasi-static approximation

0 = ∇ δF

δε
= ∇

N∑
α=1

φα
¯̄Cα(ε̄α − ε̄∗

α − ci
αε̄i

α). (49)

Phase field and concentration enter the mechanical equilibrium equation naturally.
Reversely, the stress distribution couples to both the phase-field and diffusion equation. Thus
all three equations are closely coupled. It will be demonstrated later in section 4.6 how the
consistent consideration of this coupling can be crucial for the explanation of growth kinetics
of pearlite [57].

Finally, the coupling of the phase field to flow in the liquid phase will be explained. As there
is only a negligible influence of flow and pressure on the phase stability in metallic systems,
this coupling acts only indirectly by the modification of the transport in liquid. Nevertheless,
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this can be quite significant as shown in section 4.3. The equations for fluid flow and mass
conservation read [58]

∂

∂t
[�u(φliquid)] + ∇[φliquid �u�u]

= ∇[ν∇�uφliquid] − φliquid

ρ0

[
∇p +

∂ρ

∂c
(cl − 〈cl〉)�g

]
− h∗ νφ2φliquid �u

η2
(50)

∇ · [
φliquid �u] = 0. (51)

ν is the liquid viscosity, ρ0 the average melt density, p the melt pressure, ∂ρ/∂ci the linear
coefficient of density change with the i component, 〈ci

l 〉g the global average melt concentration,
�g the gravity vector. The last term in equation (50) represents the friction of the melt on the
resting solid. It is shown in [58] that the no-slip condition in the diffuse interface is fulfilled
with an uniquely defined integration constant h∗ independent of the actual value of the interface
thickness. Examples are given in [59–62]. An alternative approach to the coupling of fluid
flow and phase-field calculations was developed by Anderson et al [63, 64]. They employ a
continuous viscosity change between solid and liquid to distinguish the transport properties of
the phases. This approach has the advantage that the moving solid can be incorporated easily
by treating it as a highly viscous fluid. However, it suffers from convergence problems if the
solid is treated as rigid and it violates the no-slip condition in the thin interface limit. Further
theoretical investigations are presented by Kassner and coworkers [65].

4. Examples

4.1. Equiaxed dendritic solidification

Solidification of metallic alloys is an important application for phase-field simulation. The
underlying physics have been well described by the Gibbs–Thomson relation for the interface
velocity coupled to redistribution of heat and solute at the interface and long-range transport
in the bulk phases, commonly referred to as the Stefan problem. Interfacial anisotropy is
weak and, in good approximation, can be treated as a perturbation of a spherical Wulff shape.
Negligible stresses develop on the interface during growth even if solid and liquid differ in
density. Heat conduction in both phases is nearly identical and solute diffusion in solid can
be neglected in comparison with solute diffusion in the melt. The only influence that troubles
researchers is convection in the melt. This is difficult to treat analytically or numerically, but
unavoidable under terrestrial conditions (see below). Experimentation under reduced gravity
is needed to establish benchmark data for validation of theories and simulations under diffusion
controlled conditions [66]. Where does the theoretical interest in dendritic solidification come
from if everything is so easy? Firstly, a solidification front growing into an undercooled
melt is intrinsically unstable [67] and a dendrite can be viewed as a self-organizing structure.
Secondly, the analytical solution of steadily growing dendrite approximated by a parabola
of revolution is a self-similar solution that does not select the absolute scale, i.e. it fails to
predict the scale of the solidification microstructure whereas nature correlates the scale of the
microstructure to the material and process conditions well. This problem was only solved quite
recently by the microscopic solvability theory [13, 69]. The mechanism is the amplification of
microscopic fluxes (thermal or solutal) at the dendrite tip, caused by surface tension anisotropy.
The amplification is due to the long-range diffusion fields around the tip, which are interlinked
with the tip shape. To date, the phase-field method is the most appropriate numerical method
that can bridge the different length scales from the capillarity length of a few nanometers,
where the interfacial anisotropy acts, to the millimeter scale of diffusions. Figure 4 shows
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Figure 4. Phase-field simulations of dendritic growth with different modes of surface tension
anisotropy. Left: cubic anisotropy with branches in the [1 0 0] directions. Middle: intermediate
state between the [1 0 0] and [1 1 0] directions. Right: anisotropy with branches in the [1 1 0]
directions. Reproduced by permission of the MRS Bulletin [68].

(This figure is in colour only in the electronic version)

three different equiaxed dendritic growth structures where the interfacial energy as a function
of the orientation of the interface normal �n, σ(�n) has been varied (reproduced from [70]). The
interfacial energy is expanded in spherical harmonics with cubic symmetry Ki with the Euler
angles θ , � ( [71]).

σ(θ, �) = σ0[1 + ε1K1(θ, �) + ε2K2(θ, �)] (52)

the anisotropy coefficients εi are in the percent range for metallic systems and the anisotropy
is hardly visible in the Wulff plot. The first cubic harmonic is known to favor the commonly
observed [1 0 0] directions (figure 4, left). However, there is strong evidence [72] that the
second term in (52) plays a significant role in some metals. In particular in Al–Zn alloys
a transition from [1 0 0] dendrites to [1 1 0] dendrites is observed with varying [73]. This
can be reproduced by reducing the prefactor of the first harmonic and keeping the second
harmonic with a fixed negative value. The intermediate state shows quite a complicated
structure that originates from the competition of different crystallographically preferred growth
structures (figure 4, middle). The right dendrite shows clear preferential directions in the [1 1 0]
directions. It must be emphasized yet again that the dendritic growth structure is a result of self-
organization of the unstable solidification front with a very weak trigger given by the interfacial
energy anisotropy. Phase-field simulations capture the underlying physics and make it tractable
on a computer.

4.2. Spacing selection in directional growth

In directional dendritic solidification, an array of primary dendritic trunks growing along the
temperature gradient forms a band of stable spacings, the mean value of which decreases with
increasing growth velocity and increasing temperature gradient. This is described well by the
classical models of Hunt and Kurz [74, 75]. It can be compiled in the simple form (see [76])

λ̄ = fD

√
lsrtip, (53)

where λ̄ is the mean spacing, ls = Ml(1 − k)c0/kGz is the length of the mushy zone or
solidification length with the liquids slope Ml, the partition coefficient k and the initial liquid
concentration c0 of a binary melt and the temperature gradient in the z-direction Gz. rtip is the
dendrite tip radius and fD a geometrical factor. In a recent phase-field study of this problem,
I was able to demonstrate that a sharp minimum of the band of stable states exists, which
depends on the interfacial anisotropy in a similar way as the selection of the tip radius [77].
A sharp upper limit of the stable band does not exist, but if there is an effective splitting
mechanism by side-branching the upper limit, from geometrical reasons, it is simply twice the
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Figure 5. Snapshot of a stable array in directional dendritic solidification of AlCu. No noise is
added therefore side-branching is low in the calculation. The actual calculation box is indicated.
Reproduced with permission from [77], © Elsevier 2008.

lower limit [78]. Figure 5 shows a stable configuration of a dendritic array. The limit of the
spacing can be investigated by narrowing the box size of the calculations. The observation that
the tip radius and shape depends weakly on the spacing, i.e. a narrow spacing hinders growth
down in the interdendritic region and narrows the tip shape, was used to reveal the mechanism
determining this limit. This mechanism competes with the deviation of the tip shape from a
parabola of revolution due to interface anisotropy. In [77] the radii evaluated by parabolic fits
in the direction of fastest and slowest growth, were used to characterize the tip (rtip) and the
trunk (rtrunk). Typically for stable growth rtip < rtrunk. Figure 6 shows the evaluated radii as a
function of the spacing. Surprisingly there is a crossover of the radii7. For the critical spacing,
the effect of interacting solutal fields of neighboring dendrites (in the periodic array) cancels
the effect of interface anisotropy and an almost perfect parabolic fit is reached. Vanishing
effective interface anisotropy should, according to the notion of the microscopic solvability
theory lead to a destabilization of tip growth. In fact, the corresponding spacing lies exactly
within the range, where destabilization of stable array growth is observed in simulations starting
with several independent dendritic tips (see insert in figure 6). This observation demonstrates
that the interfacial anisotropy, which acts on the atomistic scale of the capillarity length, is
amplified even far beyond the scale of the dendrite tip to the scale of the dendritic spacing. It
is amplified even further if we include another mechanism of transport: convection.

4.3. Spacing selection in binary alloy with buoyancy-driven convection

The problem discussed in this section is the influence of buoyancy-driven interdendritic
flow on the selection of primary spacing in directional growth and the mutual interplay of
convection with growth. On the one hand, convective transport of solute significantly alters
the growth conditions. On the other hand, the magnitude of convection depends critically
on solute gradients due to growth and on friction of the convecting liquid melt between the
dendritic trunks. Because of this delicate interplay and because the long-range convective
transport widens the amplification of interfacial instabilities again, a high theoretical interest

7 For the evaluation of the spacing, only one dendrite was simulated in a fixed box and therefore situations below the
stable band can also be examined.
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Figure 6. Plot of r
[1 1 1]
tip/trunk and r

[0 1 1]
tip/trunk for different spacings. The inserts show the stable

configuration of tip growth in the boxes with the respective spacing. Reproduced with permission
from [77], © Elsevier 2008.

in this problem arises. A high practical interest arises because convection in dendritic alloy
solidification is inevitable due to density differences in the liquid melt. The density of metallic
material depends strongly on the solute content, and due to solute redistribution at the growing
solidification front, the concentration gradient around the dendritic tips is steep. Although the
magnitude of this effect varies according to the alloy and the growth conditions, there will
always be radial gradients with respect to the direction of gravity, and there is no stable regime
against the onset of flow. Moreover, in most alloys and under technically feasible temperature
gradients, the solutal density change is two orders of magnitude higher than the thermal density
change. A stabilization of flow due to a stable temperature configuration is thus not effective.
Here I am going to give an example of directional solidification of an Al–Cu alloy with a Cu
concentration c0 = 4 at% (from [82]).

Figure 7 shows a snapshot of typical simulation results calculated in a moving frame [79].
In figure 7(a) the gravity vector is pointing in a positive z-direction with a magnitude of
g = 3gt in units gt = 9.81 m s−2 of the terrestrial gravity constant. Due to segregation of
the heavy copper into the interdendritic melt, the density increases close to the dendrite and
the melt is upwardly buoyant. In the following section, this will be termed upward flow.
Unstable plumes form and the copper–enriched melt is washed out into the bulk liquid region.
In figure 7(a), we can observe the transient from initial seeding of two solids at the bottom
of the calculation domain into a fully developed dendritic array with mean spacing around
200 µm. Obviously neither the solid structure nor the convective pattern reaches a steady
state. This is because the temporarily leading dendrites trigger the melt flow by stopping
transversal flow and supporting new upward flow in a low friction area. On the other hand, the
upward flow transports segregated copper along the dendrite into the tip region, which slows
down growth. The dendrites that have fallen back now face downward flow, created by more
advanced neighboring dendrites. This downward flow transports melt relatively low in copper
and enhances growth. In this manner, convection and growth of neighboring tips are connected
by an oscillating interaction. This picture explains experimental findings, made by Mathiesen
and Arnberg [80], of oscillating tip growth revealed by in situ synchrotron radiation imaging
of the dendritic solidification structures in a thin sample.

Reverting the vector of gravity in downward direction leads to a completely different
picture (see figures 7(b) and (c)). Downwardly buoyanced melt leads to an enrichment of
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Figure 7. Concentration and flow profile in directional dendritic growth. The solid dendrites are of
lower Cu concentration and appear dark grey. (a) upward buoyancy +3g. The time sequence starts
after seeding of two crystals at the bottom of the domain. The solid spreads and forms side branches
that evolve to a dendritic array. Between 5 s and 10 s the moving frame sets in to keep the leading
tip at fixed position, withdrawing the whole domain one grid spacing to the bottom and adding a
new layer with initial concentration c0 at the top. The dendrite spacing adjusts to approximately
200 µm. Maximum flow speed 800 µ m s−1. (b) downward buoyancy −1g. 350 µm spacing is
metastable. Maximum flow speed 33 µm s−1 (c) downward buoyancy −1g. 450 µm spacing is
stable. Maximum flow speed 50 µm s−1. Reproduced with permission from [82], © Elsevier 2009.

copper in the interdendritic region. In contrast to upward buoyancy, the mean spacing is
significantly increased (>400 µm for −1 g). This is clearly due to the enrichment of copper
at the base of the dendrites. The convecting rolls are now confined to the interdendritic region
and a stable flow pattern is established. To characterize the dependence of the spacing on the
magnitude of flow more precisely, a number of simulations with fixed domain size and two
initial seeds set in regular spacing seeking for the minimum stable spacing was performed.
Stable growth in downward flow is characterized by symmetrical convection rolls and the two
tips at equal position in the moving frame of the calculation.

Figure 8 provides a stability map of all calculations performed, classified in unstable,
metastable and stable states. Taking the minimum stable spacing for all gravity levels under
consideration, and noting that the average spacing is a multiple close to 1.5 of the minimum
spacing, we can plot the average spacing, normalized by the average spacing at 0g versus the
gravity level. Figure 9 shows the calculated spacings together with experimental results from
solidification experiments in a centrifuge by Battaile et al [81] and a scaling relation recently
derived [82].

4.4. Orientation selection in dendritic growth of Mg–Al

Mg-based alloys are gaining increasing technical importance due to the high demand for
weight reduction especially in transportation industry. A special feature of magnesium
solidification is the anisotropy of the hcp lattice. Under directional growth conditions,
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Figure 8. Stability diagram of spacings for different levels of gravity. Reproduced from [82].

Figure 9. Comparison between experiment, simulation and scaling of the spacing λ, normalized
by the spacing λ0 at gravity g = 0. Reproduced with permission from [82], © Elsevier 2009.

a crystallographic texture, which first evolves during growth and is further affected by
deformation and recrystallization, is observed. Experimental studies for Mg-alloys state
growth along 〈1 1 2 0〉 [83, 84] while growth in the basal 〈0 0 0 1〉 orientations is suppressed.
For phase-field simulation of this growth, a corresponding anisotropy function must first be
constructed. This is done in [85] using molecular dynamics data from Xia et al [86] and Sun
et al [87]. As consequence, the grain arrangement is plate-like, situated within the basal plane.
Competitive growth is simulated starting from fifty initial seeds with random orientation.
Figure 10 shows the dendritic structure after 9s of growth and a comparison between initial
and selected orientations. Grains with significant contribution of the basal orientation 〈0 0 0 1〉
in gradient direction immediately become overgrown. From the remaining seventeen grains
with basal orientations almost perpendicular to the growth direction another eight become
overgrown during further selection. Six of the prevailing dendrites have 〈1 1 2 0〉 orientations
closely aligned to temperature gradient. Their secondary arm orientations can be found close
to 60◦, and the corresponding 〈1 0 1 0〉 orientations close to 30◦, and the corresponding 〈1 0 1 0〉
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Figure 10. 3D simulation of directional dendritic growth of a Mg–Al alloy. The pole figures show
the growth orientation as initially chosen randomly for seeding at the bottom of the domain and
after orientation selection by growth. Reproduced with permission from [85] (Maney Publishing).

orientations close to 30◦ and 90◦ misorientation. Three dendrites with distinctly misaligned
〈1 1 2 0〉 orientation remain. As all grains grow with almost plate-like geometry, interaction
is already reduced in this stage and the prevailing grains may eventually stably coexist during
further growth.

4.5. Multicomponent dendrites

Another step in the direction of simulation of phase transformation in technical materials and
processes is the consideration of multicomponent multi-phase materials and of metastability
by suppressed nucleation of stable phases. This can only be done by direct coupling to
thermodynamic databases and by augmenting the deterministic phase-field and transport
equations by statistical models of nucleation. The first coupling of a phase field to a
thermodynamic database was published by Grafe et al [88] and others followed [28, 89–94].
The level of sophistication ranges from extracting the expansion parameters of the chemical
free energy function from a CALPHAD database to online coupling between phase-field
calculation of interface movement and CALPHAD quasi-equilibrium calculation as realized
in the MICRESS code [54, 37]. Nucleation has to be taken into account for prediction of grain
sizes. Noise can be added to the phase-field equation to overcome the nucleation barrier in a first
order phase transition (see [95] for a review). In a phase-field simulation on a micrometer scale,
however, only large critical nucleation sizes can be resolved with an unrealistic amplitude of
the fluctuation. Therefore statistical models based on a prescribed size distribution of inoculant
particles are used here [96, 97].

Figure 11 shows a qualitative comparison between the simulated and experimental
microstructure of the typical hypereutectic four component AlCuSiMg piston alloy (reproduced
from [98]). The homogenous melt is cooled with a constant heat extraction rate. A seed
density model has been applied for nucleation of primary silicon particles. During growth of
the primary silicon, the melt is depleted from silicon. Reaching the eutectic composition one
would expect that solidification terminates in an eutectic mode. However, since the crystal
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Figure 11. Comparison between simulation (left) and experiment (right) for KS1295. The area
is 400 µm × 400 µm in both images. However the exact temperature history in the experiment
and good values for the different nucleation barriers are not known accurately for a quantitative
comparison. Reproduced with permission from [98], © Elsevier 2006.

lattices of silicon and the fcc-Al phase are quite different, nucleation of the fcc-Al phase
on the silicon particles requires a very high undercooling and therefore was disabled in the
simulation. Instead, it is assumed that fcc-Al would nucleate heterogeneously on seed particles
in the melt with an assumed undercooling of 2K. Fcc-Al phase then starts to grow in a dendritic
manner. Nucleation of Mg2Si (black particles in figure 11) has been included in the simulation
with a nucleation undercooling of 5 K on the fcc-Al surface. However, this phase becomes
thermodynamically stable only well below the Al–Si eutectic temperature. Using the given
assumptions on nucleation the sequence of solid phases: primary silicon-fcc-Al—secondary
silicon—Mg2Si can be reproduced in accordance with the experimental observation, indicating
a pronounced non-equilibrium solidification path.

4.6. Pearlitic transformation in FeC

The pioneering work of Zener and Hillert in the 1950s [99, 100] on the cooperative growth
mode of pearlite can be viewed as the first transformation model in materials science where
the connection of transformation kinetics and structure was demonstrated. The model explains
diffusion of carbon in austenite ahead of the ferrite and cementite lamellae as the rate controlling
process for the transformation. The time needed for diffusion is thus connected to the lamellar
spacing. A fine spacing would be preferential for a fast transient to equilibrium. Such a
fine spacing, however, implies the creation of a high amount of interfaces, which hinders the
transformation. Thereby an optimal spacing can be defined. It was shown that the model
explains quantitatively experimental observation of eutectic solidification [101] while it fails
to predict the observed growth kinetics in the eutectoid solid state transformation of pearlite
accurately [102–104]. This is because of the neglect of diffusion in the parent phases as well
as the neglect of stress and strain effects, which are important in solid state. The consideration
of these effects in an analytical treatment is difficult whereas they can be treated consistently
in a phase-field model. Here, in particular, the phase-field model can employ its full power
because the growth structure does not need to be prescribed but is a result of the calculation.
It was recently possible to resolve the discrepancy between experimental observations and
the model prediction by applying the MPF model coupled to transformation strain, strain due
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Figure 12. Snapshot of the tip region as calculated for the staggered growth mode. Left: Phase
distribution. Middle: Hydrostatic stress in (MPa). The austenite around the cementite tip is
under large expansion, caused by the lattice match to cementite. A large part of the expansion
is compensated by enrichment of carbon. Therefore elastic stress is limited to 90 MPa. Right:
Carbon distribution around the cementite tip in (at%). The carbon enrichment is mainly due to the
expansion of the austenite lattice. The concentration reaches its maximum at 6 at% in austenite.
Reproduced with permission from [57], © Elsevier 2007.

to concentration gradients and stress driven diffusion [57, 105]. Furthermore, a new growth
mode, staggered growth, was predicted where cementite needles grow ahead of the ferrite front
and where the expansion of cementite causes a dilatation of the austenite lattice that has to
be compensated by uphill diffusion of carbon to the cementite tip. The calculated structure
of the transformation front together with stress and carbon concentration distribution close to
steady state is depicted in figure 12. The coupled phase field, diffusion and stress calculation is
computationally very demanding. In particular the coupling between stress and diffusion tends
to oscillating modes and destabilizes the calculations. Therefore only one cementite lamella
could be calculated in a periodical arrangement. However the calculations provide clear
evidence of the existence of the staggered growth mode and predict transformation kinetics
in the experimentally observed regime. Additional effects such as faceting of the interfaces,
partial coherency and the effect of other alloying elements are subject to further investigation.

4.7. Rafting in single crystal Ni-base superalloys

Another example of successfully applying the phase-field method to gain fundamental
understanding of microstructural evolution in complex alloy systems is the recent work on
quantitative computer modeling of γ ′ rafting (directional coarsening) and the corresponding
creep deformation in Ni-base superalloys [106–109]. Three-dimensional phase-field
simulations of coupled γ /γ ′ microstructural evolution and plastic deformation were carried
out at two different length scales. For the first time, the relative contributions from
modulus mismatch, channel plasticity and the combination of the two to γ ′ rafting have
been discriminated by dislocation-level simulations [106, 107] (figure 13). Quantitative
comparisons of times to reach complete rafting, driving force variations and microstructural
evolution during rafting among these cases showed that channel plasticity played the dominant
role in controlling the rafting process. Based on this finding, micrometer-scale simulations
[108, 109] that take into account plastic deformation in γ -channels, described by local channel
dislocation densities from individual active slip systems, were carried out. The rafting
kinetics, precipitate-matrix inversion process and the corresponding creep deformation were
characterized at different values of applied stress, lattice misfit and precipitate volume fraction
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Figure 13. Dislocation-level phase-field simulations of coupled γ /γ ′ microstructural evolution
and dislocation activities in γ -channel. Two slip systems were considered (i.e. 1

2 [1 0 1](−1 − 1 1)
and 1

2 [0 1 1](−1 −1 1)) and the lattice misfit between the γ and γ ′ phases is −0.3%. For more
details see [108].

Figure 14. Large-scale phase-field simulation of rafting in Ni–Al. The simulation results were
obtained after 9 h aging at 1300 K with uniformly distributed dislocation the γ -channel of 100 nm
spacing. The lattice misfit of the alloy is −0.3%. For more details see [109].

(figure 14). The simulation results were compared with experiments carried out for Ni–
Al–Cr [110]. Quantitative agreement was obtained. With the assistance of these models,
the interplay between elastic inhomogeneity and channel plasticity can be characterized and
utilized to offer opportunities for possible new design strategies to improve control of the
rafting process.

4.8. Ferroelectric phase transitions in BaTiO3

Another exiting application of phase-field modeling in materials science is transitions where
structural degrees of freedom are closely linked to electrical degrees of freedom, as in
ferroelectric materials. In this case, another energy contribution has to be added to the phase-
field free energy functional, the electric free energy f elec with the electric field �E and the
polarization direction �eα of the variant α.

f elec =
∑

α=1,..,N

�E �eαφα. (54)

Phase transitions in BaTiO3, grown epitaxially on a substrate, involve not only spontaneous
polarization, but also dilatation of lattice parameters. The amount of shifts will depend on
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Figure 15. Representative domain morphologies in BaTiO3 films within different domain stability
fields. (a) at T = 25 ◦C and = −1.0% strain; (b) at T = 75 ◦C and = 0.0% strain; (c) at
T = 50 ◦C and = 0.2% strain; (d) at T = −25 ◦C and = −0.05% strain; (e) at T = −25 ◦ C and
= 0.1% strain; (f ) at T = 25 ◦C and = 1.0% strain; (g) at T = 25 ◦C and = 0.25% strain; (h)
at T = −100 ◦C and = 0.1% strain. Reproduced with permission from [19]. © 2006 American
Institute of Physics.

the film orientation, the degree of coherency between film and substrate, temperature, strain
magnitude and anisotropy. For the particular case of (0 0 1)-oriented BaTiO3 film under a
symmetrical biaxial constraint, the phase transition temperatures and domain stabilities as a
function of strain have been obtained using phase-field simulations [20]. All the simulations
started from a homogeneous paraelectric state with small random noise of uniform distribution.
Examples of domain structures from the simulations are shown in figure 15, reproduced from
[20]. Under sufficiently large compressive strains (>−0.8%), there is only one ferroelectric
transition, and the rest disappears. The ferroelectric phase is of tetragonal symmetry (T P)

with polarization directions orthogonal to the film/substrate interface. Figure 15(a) is a
typical domain structure under large compressive strains, in which there are two types of
c-domains (c+ and c−) separated by 180◦ domain walls. On the tensile side, there are only two
ferroelectric phase transitions for strain values greater than +0.6%. The polarization directions
for the two ferroelectric phases are parallel to the film/substrate interface, either along [1 0 0]
(O f

1) or [1 1 0] (O f
2) direction, depending on temperature and the magnitude of strain. The

corresponding domain structures are similar to either the a1/a2 twins as shown in figure 15(c),
or the orthorhombic twins of figure 15(f ), or the mixture of them shown in figure 15(g).
Under relative smaller strains, the ferroelectric phase transitions and domain structures of
various ferroelectric phases are similar to bulk single crystals. At room temperature, the
domain structures vary from pure c-domains to c/a1/a2 then to a1/a2 twins, a mixture of a1/a2
and O1/O2 twins, and O1/O2 twins when the substrate constraint changes from compressive
to tensile. It is known that there are also other regions in which more than two or more
ferroelectric phases coexist.

5. Conclusion

The phase-field method provides a tool for the simulation of microstructure evolution in
complex materials on the mesoscopic scale. It is based on the thermodynamic description
of non-equilibrium states in materials including interfaces. The phase field is formulated
as a state variable in space and time, the evolution of which controls the pathway towards
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equilibrium. Dynamical equations are derived from the principle of entropy maximization
applying relaxational dynamics. The thin interface limit with kinetic and anti-trapping
correction for solutal transformations guarantees a maximum of numerical efficiency by
reducing numerical artifacts due to the diffusivity of the interface region beyond the atomistic
scale of a real interface. Furthermore the MPF method provides a flexible framework to include
transitions between multiple phases in multicomponent materials. Different modes of transport
like diffusion and advection can be treated as well as mechanical, electrical and magnetic
interactions. The examples presented only illustrate a small part of the various possible
applications of the method. They clearly demonstrate that today phase-field simulations are
ready to solve practical problems in materials science.

Appendix A

A.1. Traveling wave solution for the double well potential

We will start from the phase-field equation in the Kobayashi’s notation equation (1) in one-
dimensional form and the corresponding functional. The temperature will be treated as
constant.

τDWφ̇ = εDW
∂2

∂x2
φ − γDWφ(1 − φ)

(
φ − 1

2

)
+ mDWφ(1 − φ), (55)

F =
∫

�

dx

{
1

2
εDW|∇φ|2 +

γDW

4
φ2(1 − φ)2 − mDW

(
φ2

2
− φ3

3

)}
. (56)

The thermodynamic driving force mDW((φ2/2) − (φ3/3)) is directly related to the Gibbs
free energy difference �g = g(φ = 1) − g(φ = 0) between the bulk phases and fixes the
energy scale

mDW = −6�g. (57)

The steady state solution of (55) has the form of a hyperbolic tangent profile of width η

marking the transition zone between 5% and 95% traveling with constant speed vn

φ(x, t) = 1

2
tanh

(
3(x − vnt)

η

)
+

1

2
(58)

To prove the validity of the solution we just have to compute the derivatives

∂φ

∂x
= 6

η
φ(1 − φ), (59)

∂2φ

∂x2
= 72

η2
φ(1 − φ)

(
1

2
− φ

)
. (60)

Inserting (59) and (60) into (55) we have

τDWφ̇ = − τDWvn

∂φ

∂x
= −vn

6τDW

η
φ(1 − φ)

=
(

εDW
72

η2
− γDW

)
φ(1 − φ)

(
φ − 1

2

)
+ mDWφ(1 − φ). (61)

Equation (61) becomes independent of φ if the term εDW
72
η2 − γDW vanishes and we have

vn = −η

6τDW
mDW = η

τDW
�g; η =

√
72εDW

γDW
. (62)
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With the interface mobility µ as the proportionality constant between velocity and driving
force �g the time scale becomes τDW = η/µ. The fixation of the length scale η follows from
the definition of the interfacial energy. At equilibrium �g = 0 the only energy contribution
in the system is the interfacial energy per unit area σ

σ =
∫ ∞

−∞
dx

[εDW

2
(∇φ)2 +

γDW

4
φ2(1 − φ)2

]

=
∫ 1

0
dφ

[
dx

dφ

(
18εDW

η2
+

18εDW

η2

)
φ2(1 − φ)2

]

=
∫ 1

0
dφ

6εDW

η
φ(1 − φ) = εDW

η
= ηγDW

72
. (63)

It must also be borne in mind that both the gradient term proportional to εDW and the
potential term proportional to γDW contribute to equal parts to the interfacial energy. This is
the equivalent of the law of equal partitioning of kinetic and potential energy in a stationary
mechanical system. Summarizing, we find the relations between the model parameters and
the physical parameters that are valid close to the steady state solution

εDW = ση, γDW = 72
σ

η
, mDW = −6�g, τDW = η

µ
.

A.2. Traveling wave solution for the double obstacle potential

The double obstacle potential is defined as

fDO =
{γDO

2
φ(1 − φ) − mDOhDO(φ) for 0 � φ � 1,

∞ else,

hDO(φ) = 1
4

[
(2φ − 1)

√
φ(1 − φ) + 1

2 arcsin (2φ − 1)
]
. (64)

Since φ(1 − φ) is unbounded to −∞ for the unphysical states φ < 0 and φ > 1 the
obstacle fDO = ∞ for these states is introduced 8. The advantage of the double obstacle
potential is the finite slope of the potential at the minima which guarantees the convergence
of the phase-field contour to the limiting values 0 and 1 within a finite region of width η. The
disadvantage of the potential is the discontinuity of the potential at the edges of the interface.
For practical applications, the advantages clearly prevail. The special form of hDO(φ) is
dictated by the demand that a steady state traveling wave solution independent of the velocity
exists. Repeating the analysis as for the double well potential we find

F =
∫

�

dx

{
1

2
εDO|∇φ|2 + fDO

}
. (65)

τDOφ̇ = εDO∇2φ + γDO
(
φ − 1

2

)
+

√
φ(1 − φ)mDO. (66)

φ(x, t) =




1 for x < vnt − η

2
,

1

2
− 1

2
sin(

π

η
(x − vnt)), for vnt − η

2
� x < vnt +

η

2
,

0 for x � vnt +
η

2
.

(67)

8 An alternative way to formulate the potential is to use the absolute f̃DO = γDO
2 |φ(1 −φ)| which reflects unphysical

states back to the physical range.
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∂

∂x
φ = π

η

√
φ(1 − φ), (68)

∂2

∂x2
φ = π2

η2

(
1

2
− φ

)
, (69)

εDO = 8ση

π2
, γDO = 8

σ

η
, mDO = −8

π
�g, τDO = 8η

π2µ
. (70)

A.3. Traveling wave solution for the top hat potential

The weighting functions h(φ) for the double well and double obstacle potentials were
constructed such that a traveling wave solution exists, i.e. that the steady state contour does
not deform for a moving interface. In general, however, other forms of the function h(φ) are
possible. These only have to satisfy the requirement that the front, as an average, moves with
constant velocity as given by the Gibbs–Thomson relation. The moving interface will then
deform (in normal direction) dependent on the relation of the driving force �g to the interfacial
energy density σ/η. This deformation can be kept small by adjusting the interface width η and
therefore the deformation of the front can be controlled even if other monotonous functions of
h(φ) are used for numerical efficiency. For thermodynamic consistency at the triple junction it
is now indispensable to use the unity h(φ) = φ (see section 3.4) in a MPF model. It is easy to
construct an appropriate potential knowing that ∇φ and φ̇ have to be constant in the interface
if the (local) driving force is constant. This can be achieved by the use of the top hat potential

fTH = γTH[�(φ) − �(φ − 1)] − φmTH, (71)

� is the stepfunction �(φ) = 0 for φ < 0; �(φ) = 1 for φ � 0. For completeness an obstacle
to cut off against unphysical values of φ < 0 and φ > 1 has to be added which is omitted here
for readability.

The phase-field equation now reads

τTHφ̇ = εTH∇2φ − γTH[δD(φ) − δD(1 − φ)] + mTH (72)

with the piece-wise linear profile as the obvious solution

φ(x, t) =




1 for x < vnt − η

2
,

1

2
− x − vnt

η
for vnt − η

2
� x < vnt +

η

2
,

0 for x � vnt +
η

2
.

δD is the Dirac or delta function as the derivative of the step function �. It generates
the deflection in the front profile at the edges of the interface. The Laplacian at the edges
can be evaluated from a contour smoothened over a distance h in the limit h → 0 (which is
demonstrated here for the edge φ = 0 at x = 0 only). For smoothing we may use a parabola
that has the slope −1/η at x = −h

φ(x, t) = x2

2ηh
for − h < x < 0 (73)

limh→0
d2φ

dx2
= limh→0

1

hη
= 1

2η2
δD(φ), (74)

where I have substituted h = 2ηφl at the left boundary of the smoothing area and used the
definition of the δD function: δD(φ) = limφl→0(1/φl) for 0 < φ < φl and 0 elsewhere. The
relations between the model parameters and the physical parameters read

εTH = ση, γTH = σ

2η
, mTH = −�g, τTH = η

µ
.
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I am not aware that this potential is ever used in a numerical simulation. The singularity
at the edges of the interface can be assumed to cause a large discretization dependence, the
avoidance of which ins one central goal of any numerical scheme. However, it might be useful
for the investigation of thermodynamically driven triple junction motion.
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