M. Sc. Lukas Oestringer

  • Postanschrift:

    Karlsruher Institut für Technologie

    Institut für Technische Mechanik

    Teilinstitut Dynamik/Mechatronik

    Postfach 6980

    76049 Karlsruhe


    Haus- und Lieferanschrift:

    KIT-Campus Süd

    Institut für Technische Mechanik

    Teilinstitut Dynamik/Mechatronik

    Geb. 10.23, 2.OG

    Kaiserstraße 10

    76131 Karlsruhe

Contact Mechanics and Friction induced Vibrations

Rough Surface
Real Contact Area

Systems with friction are widespread in all kinds of applications. Unfortunatelly the precise simulative prediction of the resulting friction force in frictional contacts is still an unsolved task which has led to the developement of many empirical friction laws. Nevertheless, a deeper insight into the actual contact situation and the corresponding friction force with its dependency is necessary to improve technical systems e.g. with regard to energy efficiency and wear.

Early works on this topic by Greenwood & Williamson and Archard for the pure elastic and Bowden & Tabor for the pure plastic deformation case have at least led to a justification for Coulombs friction law. Their results indicated that the real contact area is almost proportional to the normal contact force whereat this relation can be attributed to surface roughness in both cases. Coulombs friction law can then be justified by the additional assumption that the friction force is proportional to the real contact area.

Further influences on contact forces, real contact area and friction coefficient besides surface roughness are investigated by contact simulations on microscopic scale which include for example temperature evolution and thermoelastic distortions due to frictional heat. Keeping in mind that a specific friction coefficient is always closely connected to the actual macroscopic system bevhaviour and vice versa investigations on the macroscopic system behaviour are performed as well.

Contact: Prof. C. Proppe, L. Oestringer


On the fully coupled quasi-static equations for the thermoelastic halfspace
Oestringer, L. J.; Proppe, C.
2023. Mechanics of Materials, 177, Artkl.Nr.: 104554. doi:10.1016/j.mechmat.2022.104554
On the influence of surface roughness on friction‐induced oscillations
Oestringer, L. J.; Proppe, C.
2021. Proceedings in applied mathematics and mechanics, 21 (1), e202100013. doi:10.1002/pamm.202100013Full textFull text of the publication as PDF document
On the calculation of a dry friction coefficient
Oestringer, L. J.; Proppe, C.
2019. Proceedings in applied mathematics and mechanics, 19 (1), Article: e201900407. doi:10.1002/pamm.201900407
Investigation of Vibrations Induced by Dry Friction in a Pin-on-Disk Experimental Set-up
Kapelke, S.; Oestringer, L. J.; Seemann, W.
2017. Proceedings in applied mathematics and mechanics, 17 (1), 375–376. doi:10.1002/pamm.201710157