

Low frequency brake vibrations

- experiment, pseudo-phasespace embedding, modelling -

ASME IMECE 2006 Chicago

H. Hetzler, W. Seemann

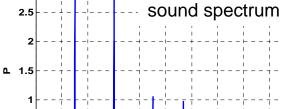
Universität Karlsruhe (TH) Research University • founded 1825

Institute for Engineering Mechanics

Introduction

Phenomenon

- Disc-Brake Noise: groan, muh basic frequency: ~300 Hz
- very low driving speeds
 (→ low ambient noise!)
- mostly cars with automatic-gearshift



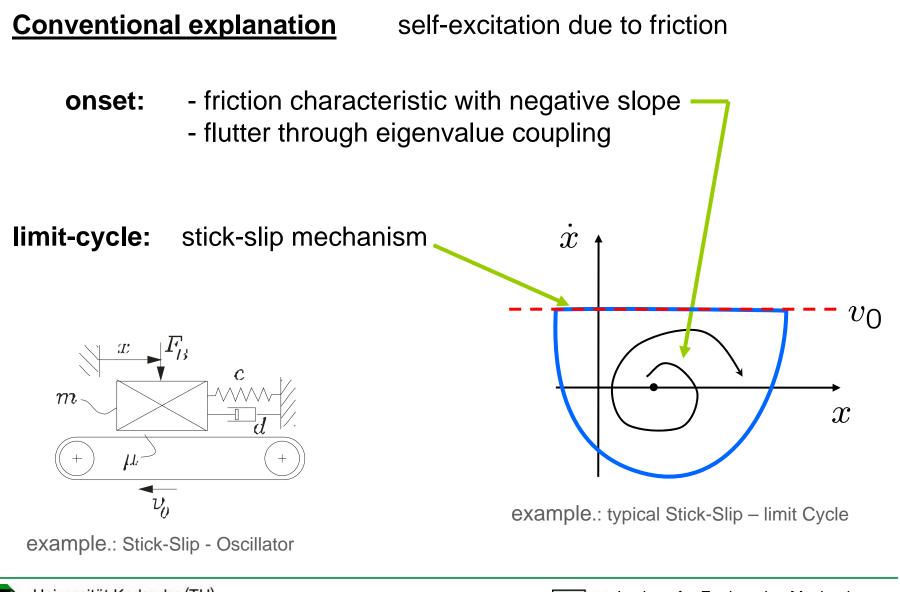
3<u>× 1</u>0⁻³

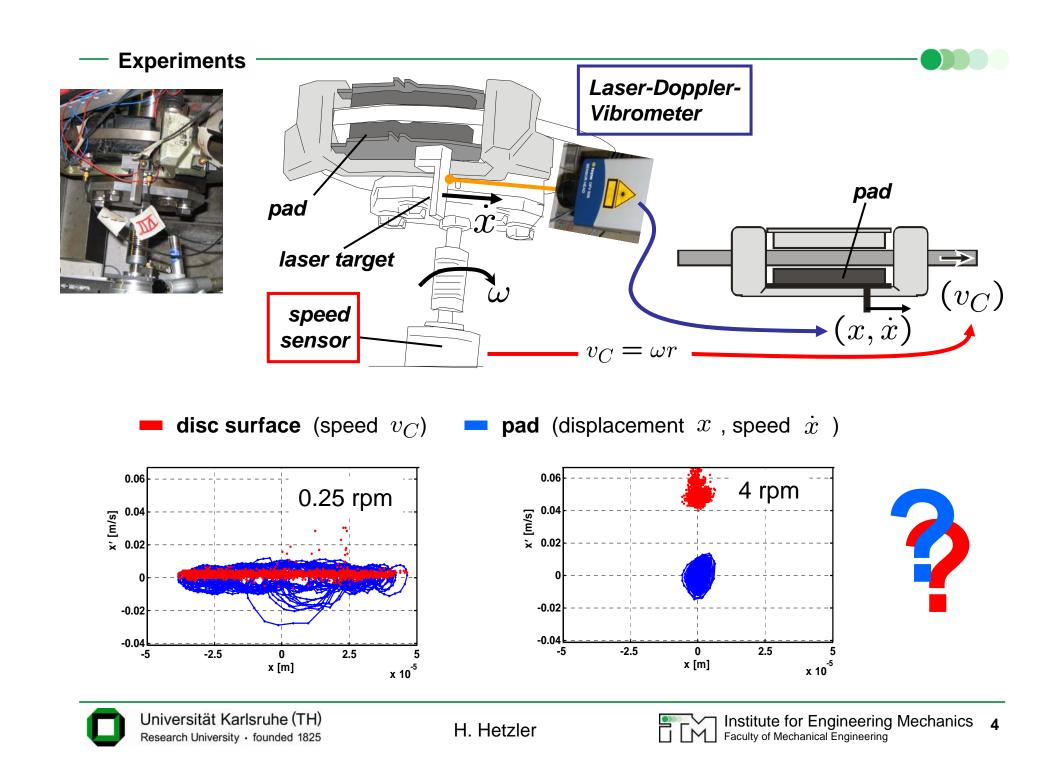
0.5

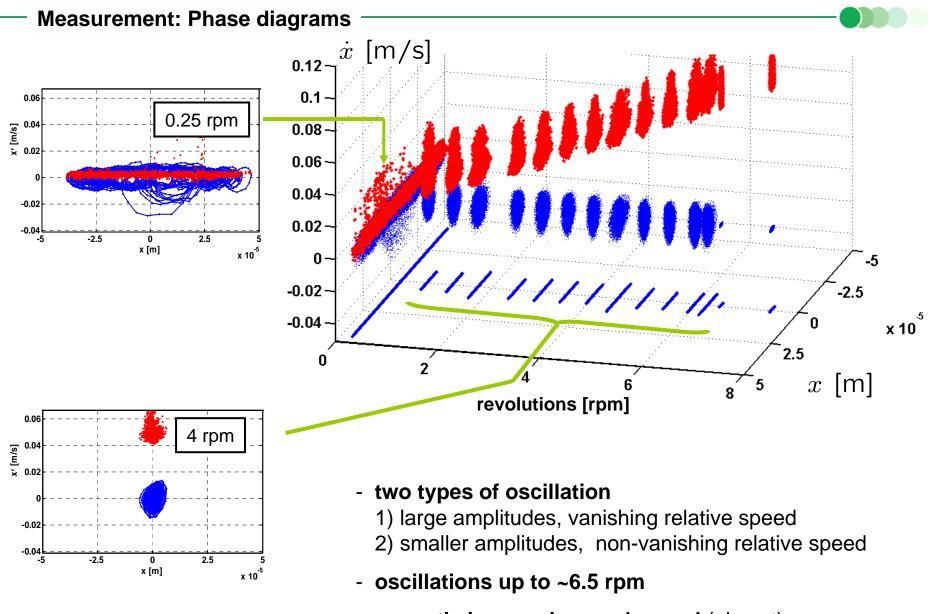
n=1 U/min, F_B =1500N

200 400 600 800 1000 1200 1400 1600 1800 2000 f [Hz]

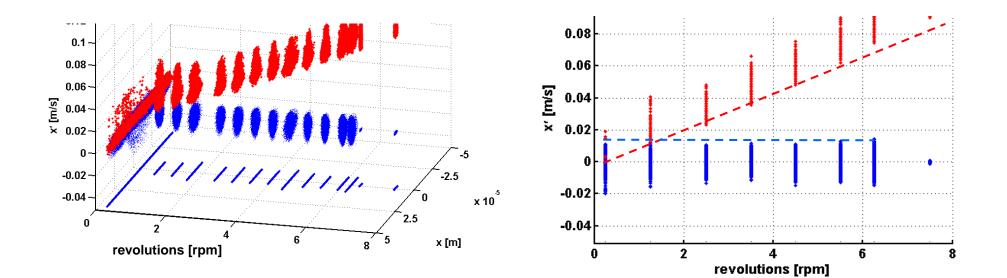
typical frequency contents



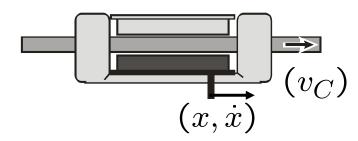




- acoustic impression unchanged (almost)

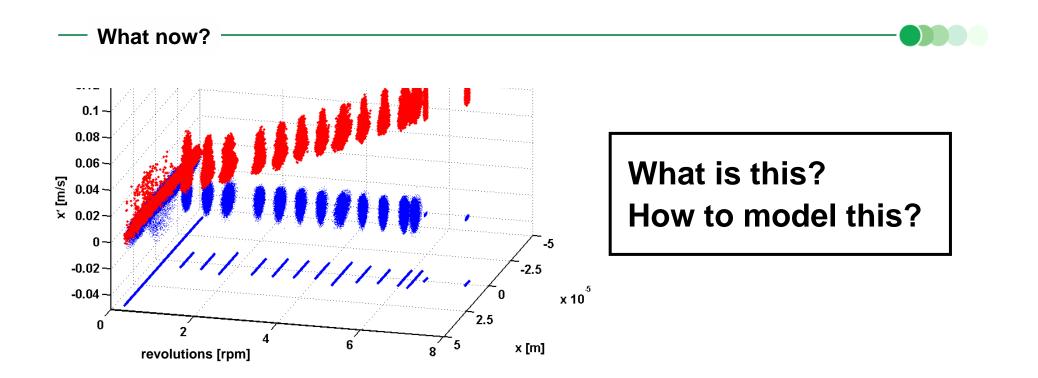


Scaling behaviour



disc surface: $v_C \propto {
m rev.-speed}$. $\dot{x}_{max} = \text{const}$ pad:

... stiction between pad and disc?



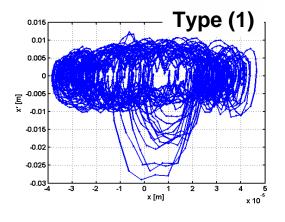
Questions - Are there Limit-Cycles or Periodic Attractors ?

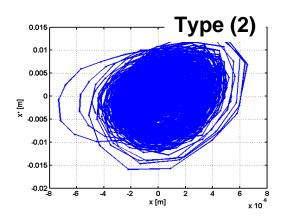
- What dimension needs a state-space to contain them?
- What mechanism drives these oscillations? Is it really a "stick-slip" – mechanism?

Periodic Attractor (Pad)

First try...

Pad's displacement & speed (x,\dot{x}) stationary data duration: ~1sec





Periodic Attractor?

recognizable

nothing recognizable

Idea: use phase-space reconstruction to see if there's an attractor

spanning a pseudo phase-space with $y_{t+2\tau}$ delayed time series

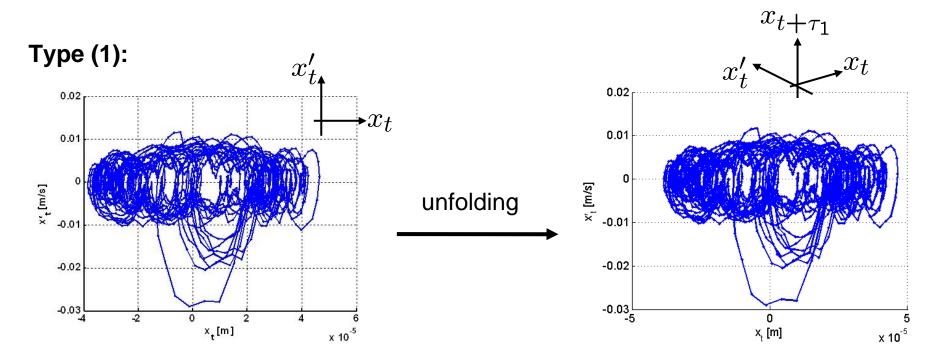
 $y_t, y_{t+\tau}, y_{t+2\tau}, \dots, y_{t+(n-1)\tau}$

 y_t

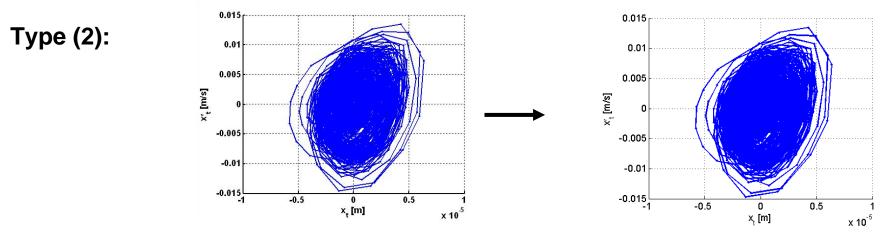
Issues: au - delay, lag n - dimension

classical phase-diagram, unfolded by means of delayed time series

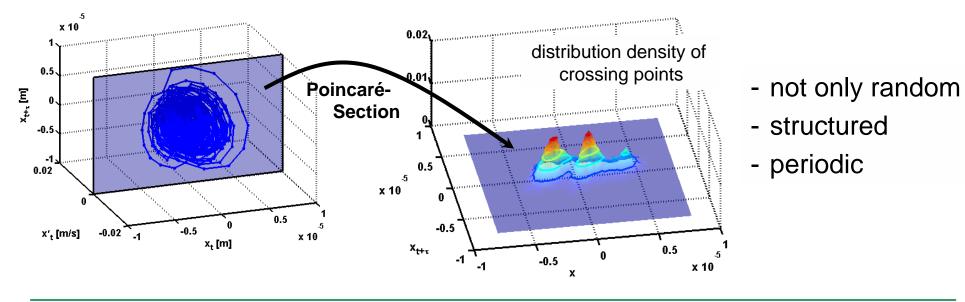
- x_t - displacement data time series
- x'_{+} - velocity data
- $x_t + \tau_1$ delayed displacement time series



periodicity already visible in 3d-phase-space!



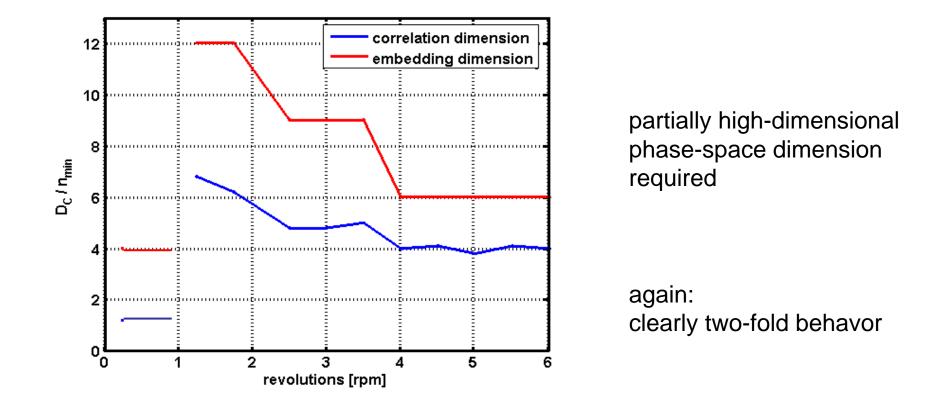
straight-forward attempt: - no periodicity visible in 3d-phase-space - but: seems to have a structure

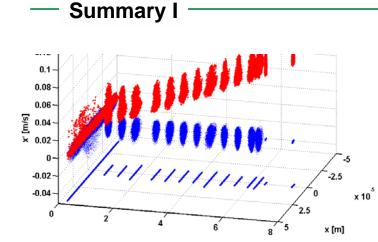


Phase-space Dimension

Embedding Dimension n: minimal phase-space dimension

Correlation Dimension $D_C(n, r)$: (local) attractor dimension

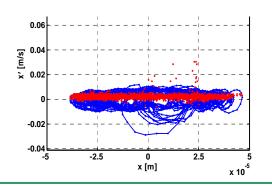




2 types of motion

type (1)

- extremely low speeds
- relative speed may vanish
- large amplitudes
- phase-space dimension $n_{min}pprox$ 4

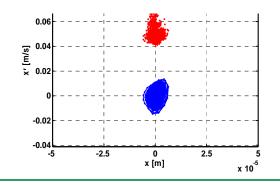


Universität Karlsruhe (TH) Research University · founded 1825

H. Hetzler

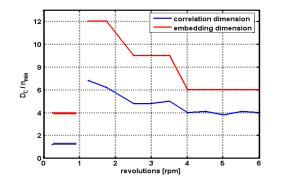
type (2)

- moderate speeds
- relative speed does not vanish
 → stick-slip unlikely
- smaller amplitudes , independent of driving speed
- phase-space dimension $n_{min} pprox 6-12$



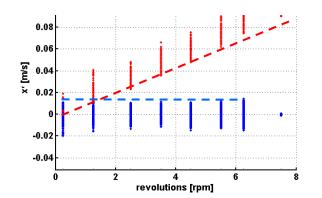
Institute for Engineering Mechanics 12 Faculty of Mechanical Engineering

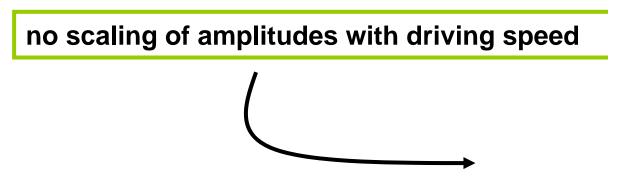
Summary I



Phase-space of finite dimension

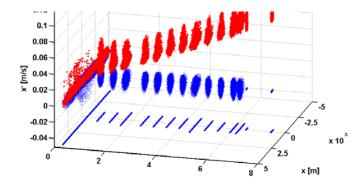
- partially high-dimensional phase-space required





may this be explained by a stick-slip mechanism?

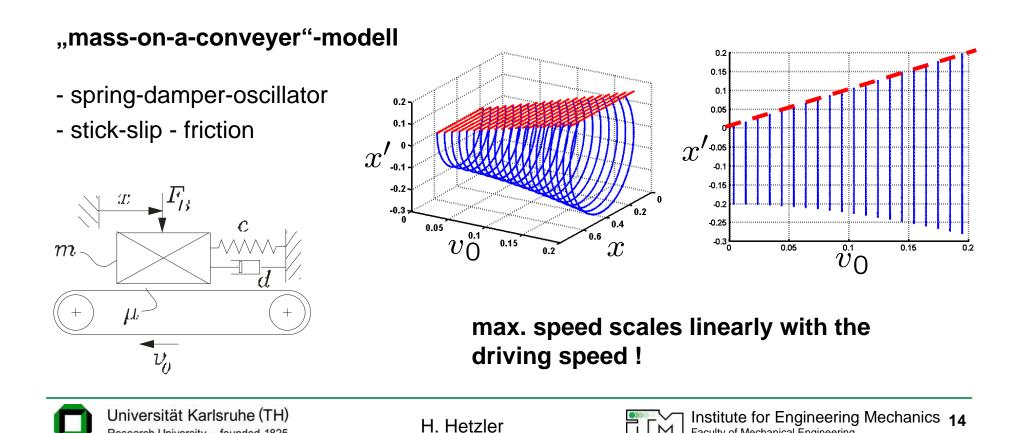
Simulation: stick-slip oszillations



Research University · founded 1825

May the stick-slip mechanism produce this scaling behavior?

Faculty of Mechanical Engineering



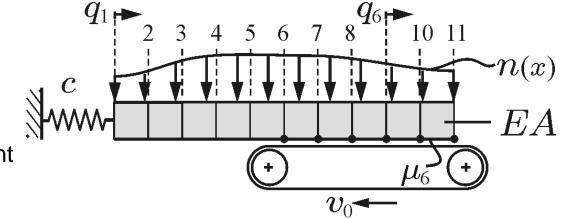
Stick-slip oszillations / Elastic Bodies

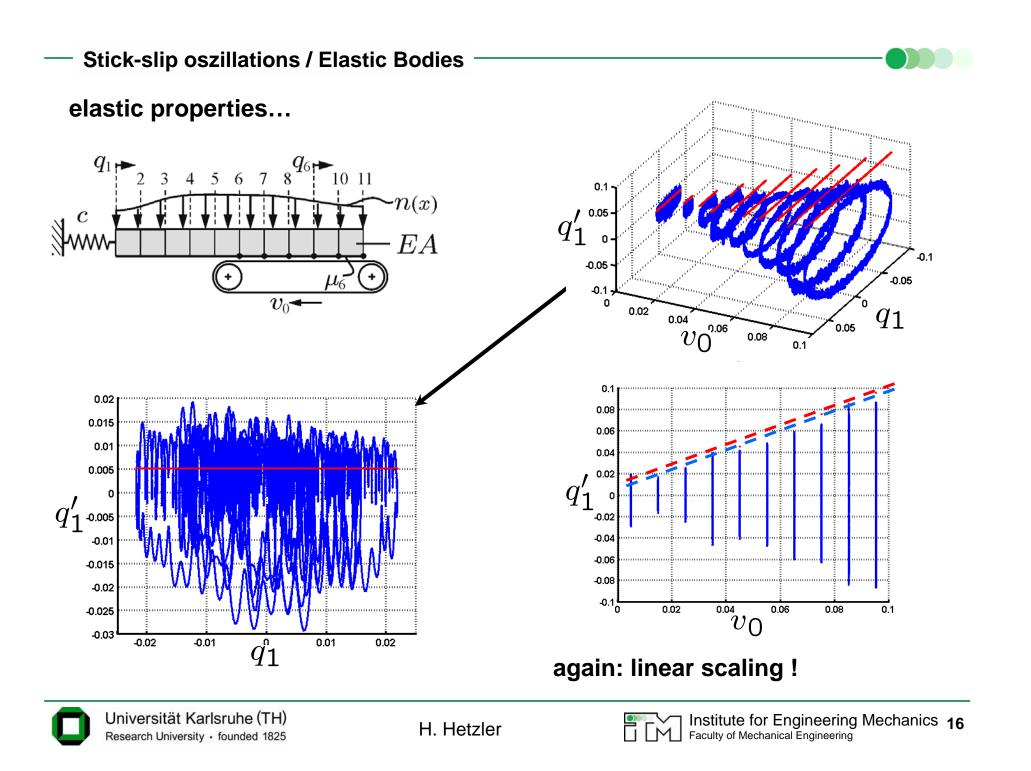
What about elastic properties?

elastic beam on a conveyor

- linear elastic beam (EA)
- elastic coupling to environment
- FE-discretization
- stick-slip friction at the nodes
- Lagrangian Multipliers / event-driven sim.

$$\mathbf{M}\ddot{\mathbf{q}} + \mathbf{C}\mathbf{q} = \mathbf{f}_{\mathbf{S}} + \mathbf{G}^{\mathrm{T}}\boldsymbol{\lambda}$$





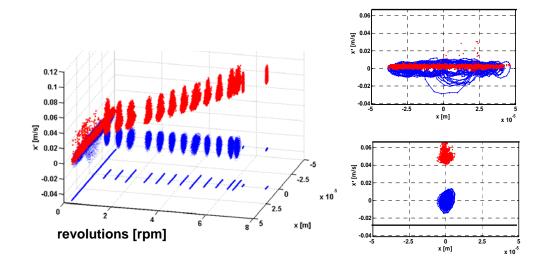
Conclusion

Initial Questions: What is this groaning noise?

How to model it?

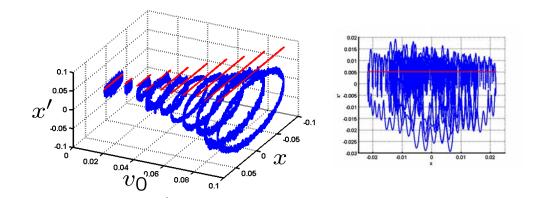
Experiment:

- it's twofold
 - -> type (1): "stick-slip"
 - -> type (2): no stiction
- unexpected scaling behavior (it doesn't scale!)



Simulation:

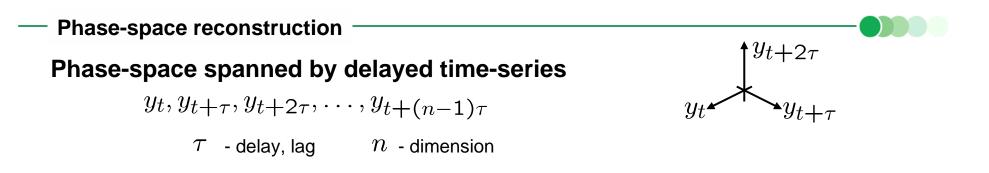
- stick-slip oscillators:
 - don't show scaling from exp. !
- stick-slip with elastic properties: \rightarrow simulation of type (1)



Open Question:

What is this "Type 2" - Oscillation ?

Thank you for your attention !



objects in the reconstructed pseudo-phase-space will have the same topological properties than in the (unknown) genuine phase-space

limit cycles: closed curve, no crossing, ...

choice of lag τ and dimension n**Issues**:

<u>Choice of lag τ :</u> delay vectors should be mutually "independent", "perpendicular"

- Average Mutual Information $I_{y_t y_{t+\tau}}(\tau)$ as measure of statistical dependency

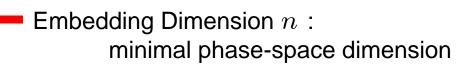
experiments with simulated stick-slip data showed GOOD performance !

Phase-space Dimension

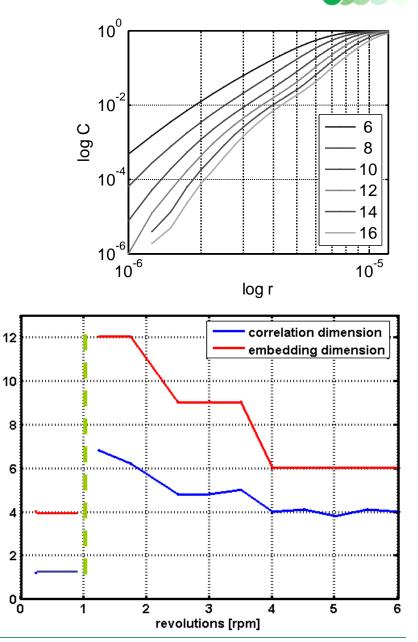
with: Correlation Sum $C(n,r) = \frac{2}{N(N-1)} \sum_{i=1}^{N} \sum_{j=i}^{N} \Theta\left[r - ||\mathbf{s_i} - \mathbf{s_j}||\right]$

Invariant Measure: Correlation Dimension $D_C(n,r) = \frac{\partial \log C(n,r)}{\partial \log r}$

- → embedding suffices to render the (local) structure of the system dynamics



Correlation Dimension $D_C(n,r)$: (local) attractor dimension

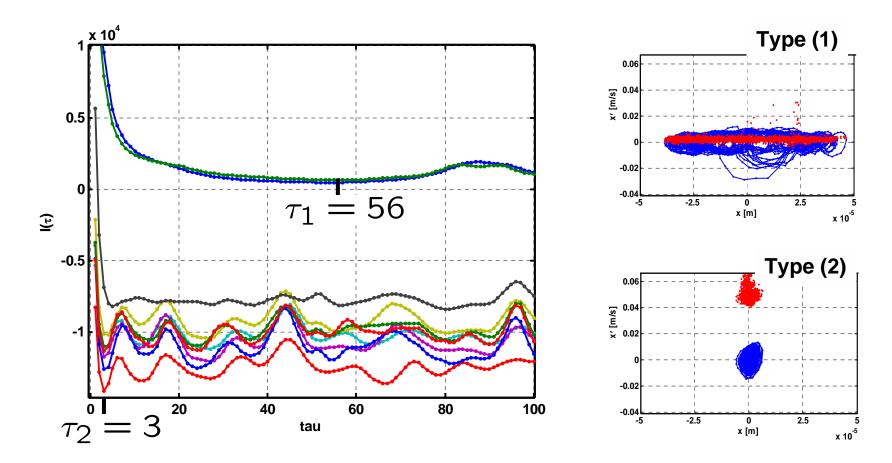


Institute for Engineering Mechanics 20

Faculty of Mechanical Engineering

D_c / n_{min}

Time Delay τ : first minimum of the Average Mutual Information



(Discussion of other common criteria: please refer to paper)

