Engineering Mechanics III (Lecture)

• Typ: Vorlesung (V)
• Semester: WS 22/23
• Ort:

10.50 Kollegiengebäude Bauingenieure II, HS 102

• Zeit:

montags, 14:00 - 15:30

• Beginn: 24.10.2022
• Dozent/Übungsleiter:

Dr.-Ing. Ulrich Römer

• SWS: 2
• LVNr.: 3161012
• Hinweis: Präsenz/Online gemischt

Current information

All information and documents for the lecture and the respective tutorial can be found in the Ilias course. All lectures and tutorials will take place in presence, according to the latest corona rules (cf. KIT FAQ). The first tutorial will be about the Dynamics Lab workshop on Wednesday, April 20th. The first lecture will be on Monday, April 25th.

Prerequisite for the examination: In order to be allowed to take part in the examination, tutorial sheets must be submitted via Ilias in due time. The exercise sheets and all other notes, dates, deadlines, etc. are published in the Ilias course.

Course information

Learning target:

Engineering mechanics III deals with kinematics and kinetics of system of particles as well as plane motion of rigid bodies under the influence of forces and moments. Equations of motion are derived using Newton's axiom and the principle of moment of momentum. As applications the equations of motion are derived for systems of particles and simple systems of rigid bodies, including impact problems. Therefore, the course aims at applying Newton-Euler's equations, Principle of moment and principle of moment of momentum as well as principle of energy conservation for simple mechanical engineering problems.

Content:

• Kinematics: Cartesian, cylindrical and natural coordinates. Time derivatives in moving reference frames, angular velocities of reference frames.
• Kinetics of a particle: Newton's axiom, Principle of d'Alembert, work of a force, kinetic and potential energies, principle of linear momentum, principle of moment of momentum, kinetics in moving reference systems
• Systems of particles: Principle of center of mass, Principle of moment of momentum, impacts between particles, systems with variable mass, applications.
• Plain motion of rigid bodies:
Pure translation, pure rotation, general plain motion. Instantaneous center of rotation, Kinetics, moment of momentum, principle of work and principle of energy conservation for a rotation around a space-fixed axis. Mass moment of inertia, parallel-axis-theorem.Principle of linear momentum and principle of moment of momentum for arbitrary plain motion. Principle of d'Alembert for plain motion. Principles of linear and moment of momentum in integral form. Applications for impact problems.