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Abstract

A low-cost computer model for ultrasonic detection of arbitrarily shaped and oriented planar cracks in an elastic half-
space is presented. The model is based on the use of the integral equation technique and asymptotics derived from the oscil-
late integrals. The implementation of the method is illustrated by numerical examples.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Traditionally the data processing of ultrasonic non-destructive testing (NDT) has relied upon ray methods
of general diffraction theory similar to those used in geometrical optics [1,2]. In view of the asymptotic nature
of the ray approach, it is used in the high-frequency band, when the wavelength of the probing signal is much
less than the characteristic dimension of the defect. On the other hand, if the dimensions of the defect are com-
parable with or less than the wavelength, reliable mathematical models become particularly important, since
the reflection in this case gives a very blurred image, which requires special processing to size and shape the
defect.

In this case a solution can be obtained by direct numerical methods like FEM, BEM or Finite Differences.
However, these methods are time consuming and fail to provide an insight into the mechanics of wave inter-
action processes.

The integral equation approach [3,4] holds an intermediate position between the ray and direct numerical
methods combining their advantages. On one hand, it gives a numerical solution like FEM, while being sig-
nificantly less computationally intensive. On the other hand, asymptotic derivation of the integrals gives the
same physically significant expressions as the ray-based approaches, while retaining in contrast the critical
information about sources, structures and scatterers required for the reconstruction process.
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Therefore, the integral equation method gives the chance to discover and explore fine wave phenomena that
are usually overlooked with other approaches. It allowed us in particular to investigate the structure of
time-averaged energy flows in layered and stepped waveguides with energy vortices and backward fluxes
[5,6], as well as to clear up their role in resonance extinguishing of surface waves [7].

In this paper we present a low-cost computer model for ultrasonic detection of arbitrarily shaped and
oriented planar cracks in an elastic half-space. The model is based on the intensive use of the integral equation
technique and asymptotics derived from the oscillate integrals. Typically, there are three problems of self-de-
pendent interest: (1) calculation of an incident field u0, excited by a given source, (2) computation of the
scattered field u1, diffracted by some obstacles (cracks, inclusions, etc.), and (3) accounting for the field u2,
re-reflected from the sample surface, to be able to model a surface imprint of the scattered waves (Fig. 1).

Within the integral equation technique, u0 is derived explicitly in terms of a convolution of the half-space
Green’s matrix k with a given surface load q0 (see Section 3 below), while u1 and u2 are to be obtained through
the numerical solution of the boundary integral equations (BIEs) arisen from satisfaction boundary conditions
on the defect’s and sample’s surfaces. There possible two situations: (1) a crack is deepened rather far from the
surface, so that these fields can be calculated via successive solutions of practically independent diffraction (for
u1) and reflection (for u2) problems; (2) with a near-surface or surface-breaking crack the mutual influence of
the fields u1 and u2 is so strong that successive iterations are practically inapplicable and they have to be
obtained, therefore, simultaneously from a more complicated BIE, which matrix-kernel accounts strictly
for an infinite sequence of all re-reflections between the crack and half-space surfaces.

In the first case, the integral equations are well-known hypersingular BIEs with respect to an unknown
crack opening displacement (c.o.d.) v; their right-hand sides depend on the incident field u0. The field u2

can also appear in the right-hand sides within a successive specification of re-reflected fields. In this process
the integral operator in the left-hand side of the BIEs remains the same to be an operator with a matrix-kernel
l1 derived for a crack in an unbounded elastic space (Section 4).

There has been developed a variety of approaches to their numerical solution (e.g., [8–12]) to be the key
step of NDT models elaboration. To avoid the problem of kernel singularity we use a variational Galerkin
scheme in the Fourier transform domain with the radial trial and test basis functions [13]. The far-field
asymptotics of u1 (scattering diagrams) are derived from the integral representation of the diffracted field
via the c.o.d. v.

As for the reflected field, it seems natural to use the laws of ray reflection from a free surface [14] to obtain
u2. However, more accurate asymptotics of u2 has also been derived directly from the integral representation,
which connects u2 with the incident on the surface z = 0 field u1 explicitly (Section 5). That explicit integral
relation derived for an arbitrarily inclined crack allowed us, in addition, to arrive at the BIE with a modified
kernel required in the second case of near-surface cracks (Section 6). Its solution assures rigorous satisfaction
of the stress-free boundary conditions on the both crack and half-space surfaces.
Fig. 1. Geometry of the problem.
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The model developed is illustrated by numerical examples of wave patterns and transient pulses acquired at
the half-space surface (Section 7).

2. Description of the problem

Let us consider an elastic isotropic half-space containing an arbitrarily oriented and shaped planar crack. In
a global Cartesian coordinate system (x,y,z) the half-space occupies the lower volume �1 6 x,y 61,
�1 6 z 6 0, while the crack is an infinitesimally thin material discontinuity with traction-free sides in a plane
domain (x1,y1) 2 X, z1 = 0. Here (x1,y1,z1) is a local coordinate system connected with the crack (Fig. 1).

With obvious modifications the mathematical technique used below is applicable with any stratified medi-
um which elastic constants are piecewise functions of z and does not depend on horizontal coordinates x,y

(e.g., for interface crack detection [15]). However, for clarity sake we shall restrict our consideration to an iso-
tropic homogeneous half-space.

The crack’s location and orientation in the global system is fixed by the coordinates xc of the centre of the
local system in the global one and by a rotation matrix C setting a one to one connection between the coor-
dinates of a point in the global (x) and the local (x1) systems:
x1 ¼ Cðx� xcÞ; x ¼ xc þ C1x1; C1 ¼ C�1. ð2:1Þ

The action of a probe (of an ultrasonic transducer) upon the medium is modeled by a given time-harmonic
load q0e�ixt applied to the traction-free surface z = 0 in a contact domain D
sðxÞjz¼0 ¼
q0ðx; yÞ; ðx; yÞ 2 D;

0; ðx; yÞ 62 D:

�
ð2:2Þ
Here s = Tzu = {sxz,syz,rz} is a surface stress vector and D is a contact area between the source and the tested
sample; Tz = Tn with n = (0,0,1), where Tn is a stress operator which yields a stress vector s relating to a field u

at an area element fixed by a unit normal n: s = Tnu � kndivu + 2lou/on + l (n · curl u); k, l are Lamé param-
eters of the elastic medium.

Depending on the type of the transducer, the contact area can be of different form (elliptic, rectangle or
even disconnected: D = [ mDm for a system of sources). Function q0 sets the load distribution in D depending
on the source characteristics (longitudinal or transverse, directional, inclined, etc). To model a realistic probe,
q0 ought to be chosen in accordance with the law of traction distribution in the interface between the trans-
ducer and the tested material when it is caused by an incident plane wave coming from the electrically excited
beveled edge of the transducer’s piezo-crystal. This law is easily derived if the effect of finiteness of D is neglect-
ed [14,16]. Otherwise, q0 is defined via solution of the Wiener–Hopf type integral equation, to which the con-
tact problem is reduced [4]. Furthermore, we consider q0 as a known function.

Since any transient pulse u (x, t) can be expressed as a linear superposition of the harmonic solutions
u (x,x) e�ixt
uðx; tÞ ¼ 1

p
Re

Z 1

0

uðx;xÞe�ixt dx; ð2:3Þ
we start from the harmonic steady-state problem with a circular frequency x, omitting further the harmonic
factor e�ixt.

The main idea of the proposed approach is to compose the total field u of the source field u0, the scattered
field u1 and the reflected field u2
u ¼ u0 þ u1 þ u2 ð2:4Þ

using their explicit integral representations in terms of the half-space Green’s matrix k, a given load q0, and an
unknown c.o.d. v. In such a partition u0 is the wave field obeying the boundary condition (2.2) at the half-
space surface and the radiation condition at infinity. It is continuous inside the half-space while the diffracted
field u1 is discontinuous at the crack with the jump (c.o.d.)
v ¼ ðuþ1 � u�1 Þjz1¼0; ðx1; y1Þ 2 X. ð2:5Þ
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Here u�1 are parts of u1 at the different sides of the crack plane z1 = 0 written in the local coordinates x1 (uþ1 for
z1 P 0 and u�1 for z1 6 0).

This field u1 alone does not meet boundary conditions, hence the reflected field u2 is introduced to comply
the stress-free condition at the surface z = 0 remaining after realization (2.2) by u0:
T zðu1 þ u2Þjz¼0 ¼ 0. ð2:6Þ

Then, the stress-free condition at the crack sides must be satisfied by the superposition of all these three fields:
T nðu0 þ u1 þ u2Þjz1¼0 ¼ 0. ð2:7Þ
Here Tn is the stress operator defined under (2.2) with n to be a unit normal to the crack plane.
In line with the physical matter of the process, the field uc = u1 + u2 caused by the presence of crack may be

understood as an infinite succession of recurrent fields, diffracted by the crack and reflected from the surface:
u1 ¼ u
ð1Þ
1 þ u

ð2Þ
1 þ u

ð3Þ
1 þ � � �

u2 ¼ u
ð1Þ
2 þ u

ð2Þ
2 þ u

ð3Þ
2 þ � � �

ð2:8Þ
Here, u
ð1Þ
1 is the field scattered by the crack in the whole space due to the u0 incidence; u

ð1Þ
2 is the reflected field

due to u
ð1Þ
1 incidence on the surface z = 0; u

ð2Þ
1 is due to u

ð1Þ
2 scattering by the crack, and so on.

With such a partition boundary conditions (2.6) and (2.7) also split up into a chain of equalities with respect
to subfields u

ðiÞ
1 and u

ðiÞ
2 , i = 1,2, . . .:
T nðu0 þ u
ð1Þ
1 Þjz1¼0 ¼ 0 T zðuð1Þ1 þ u

ð1Þ
2 Þjz¼0 ¼ 0

T nðuð1Þ2 þ u
ð2Þ
1 Þjz1¼0 ¼ 0 T zðuð2Þ1 þ u

ð2Þ
2 Þjz¼0 ¼ 0

� � � � � �
T nðuði�1Þ

2 þ u
ðiÞ
1 Þjz1¼0 ¼ 0 T zðuðiÞ1 þ u

ðiÞ
2 Þjz¼0 ¼ 0

� � � � � �

ð2:9Þ
With a deepened crack and the Auld’s electromechanical reciprocity argument technique [17], in many cases it
is quite enough to take into account only the first scattered term u

ð1Þ
1 to be able to simulate adequately scan-

images measured in practice with probes and/or receivers moving over the surface [16,15]. A contribution of
the next terms of expansions (2.8) into the Auld’s argument dC becomes tangible only with near-surface and
surface-breaking cracks. In such a case the boundary element or boundary integral equation approach is ap-
plied to obtain the scattered and reflected fields by simultaneously satisfying boundary conditions (2.6) and
(2.7) at the sample surface and crack’s sides without any recurrent chains of re-reflections [18,19]. There is
no need for any further terms in this case, because the mutual influence of the scattered and reflected fields
u1 and u2 is taken into account strictly via BIEs.

A new need in the calculation of the summary field uc = u1 + u2 at the surface even with deepened cracks
grew recently out of the laser measurement technique (e.g., see [20]). The laser acquirement of data from many
surface points simultaneously is much faster than by transducers, but to simulate those data one has to com-
pute the wave field uc at the surface instead of using Auld’s coefficient dC. With the laser measurements, a
procedure of the crack form reconstruction can be based upon a fast parametrical analysis of the field |uc| pat-
terns on the surface.

3. The probe field

3.1. Integral representation

Let k (x) be a matrix which columns kj (x) are displacement vectors associated with the surface point loads
s|z=0 = d (x)ej, j = 1,2,3 and the radiation condition at infinity. Here d is the Dirac function and ej are the unit
coordinate vectors for the axes Ox,Oy,Oz, respectively. This matrix k is referred to as the half-space Green’s

matrix. With the matrix k any displacement resulted from a surface load, including the probe field u0, can be
expressed in terms of the convolution integral
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u0ðxÞ ¼
Z Z

D
kðx� nÞq0ðn; gÞdndg; n ¼ fn; g; 0g. ð3:1Þ
Obviously, u0 complies with the boundary condition (2.2).
The Fourier transform technique allows one to derive half-space Green’s matrix in terms of path Fourier

integrals
kðxÞ ¼ F�1½K� � 1

ð2pÞ2
Z

C1

Z
C2

Kða1; a2; a; zÞe�iða1xþa2yÞ da1 da2; ð3:2Þ
where a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

1 þ a2
2

p
, matrix K ¼ F ½k� is the Fourier transform of k (x) over x,y (Fourier symbol); by F and

F�1 we denote direct and inverse transforms.
The contours C1 and C2 go in the complex planes a1,a2 along the real axes Iman = 0, n = 1,2, deviating

from them for bypassing real poles and branch points of the matrix K elements. The directions of the deviation
are governed by the principle of limiting absorption [4].

It is worthy to note that representation (3.1) and (3.2) remains valid with any piecewise continu-
ous dependence of elastic properties on z (e.g., for a multi-layered half-space or a laminated plate).
For an isotropic homogeneous half-space the symbol K is of the following structure (in the conven-
tional notation introduced by Vorovich and Babeshko [4]): K = K� (K+ is for the upper half-space
z > 0) and
K�ða1; a2; a; zÞ ¼
X2

n¼1

K�n ða1; a2; aÞe�rnjzj ð3:3Þ
with
K�n ¼
1

D

�iða2
1Mn þ a2

2NnÞ �ia1a2ðMn � NnÞ �ia1P n

�ia1a2ðMn � NnÞ �iða2
1N n þ a2

2MnÞ �ia2P n

a1Sn a2Sn �Rn

0
B@

1
CA;

M1 ¼ ir2; M2 ¼ �ir2c2=a2;

P 1 ¼ �c2; P 2 ¼ r1r2;

S1 ¼ ir1r2; S2 ¼ �ic2;

R1 ¼ �r1c2; R2 ¼ r1a2;

N 1 ¼ 0; N 2 ¼ iD=ðla2r2Þ;

ð3:4Þ

DðaÞ ¼ 2lð�c4 þ a2r1r2Þ; c2 ¼ a2 � 0:5j2
2;

rnðaÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � j2

n

q
; jn ¼ x=vn; n ¼ 1; 2;
v1, v2 are velocities of the longitudinal and transverse (P and S) body waves, j1, j2 are corresponding wave
numbers. The branches of the radicals are fixed in the complex plane a by the cuts
aðtÞ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2

n � t2
p

; 0 6 t 61 and conditions rn (a)!1 as a2!1, so that no growing exponents occur
in any K component as |a|!1 or z!�1.

Functions Mn,Nn,Pn,Rn,Sn and D in (3.4) depend only on a, therefore, the change of variables
a1 ¼ a cos c

a2 ¼ a sin c

�
x ¼ r cos u

y ¼ r sin u

�
a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

1 þ a2
2

p
r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p ð3:5Þ
together with the Bessel functions representation [21]
2pinJ nðarÞ ¼
Z 2p

0

eiar cos c�inc dc ð3:6Þ
brings (3.2) to a one-dimensional path integral form:
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kðxÞ ¼ 1

2p

Z
C

Kðio=ox; io=oy; a; zÞJ 0ðarÞada. ð3:7Þ
The contour C is resulted from C1, C2 in accordance with the change (3.5). It goes in the complex plane a along
the real positive axis Ima = 0, Rea > 0 also bypassing real positive poles fm and branch points jn of the integ-
rands. With the homogeneous medium considered, there is the only Rayleigh real pole f: D (f) = 0.

The multipliers a1,a2 are substituted in K by the space derivatives by virtue of the one-to-one
correspondence
ap1
1 ap2

2 $ i
o

ox

� �p1

i
o

oy

� �p2

; p1; p2 ¼ 0; 1; 2.
Their acting on the Bessel function yields the Bessel functions again [21]:
o

ox
J 0ðarÞ ¼ � a cos uJ 1ðarÞ;

o
2

ox2
J 0ðarÞ ¼a2½ðsin2 u� cos2 uÞ J 1ðarÞ

ar
þ cos uJ 0ðarÞ�; etc:
so that no derivatives remain in the final integral representation. It should be noted that such representation
can also be derived directly from (3.2) without derivatives in (3.7), just by substituting sinpc, cospc,p = 1,2 into
(3.3) accordingly (3.5) in terms of exponents e±inc, which are accounted then in (3.6).

3.2. Far-field asymptotics

The derived integral representation (3.1)–(3.7) is quite applicable for a direct numerical obtaining of
the incident field u0 (x) in a near-field zone, where the distance from the source R = |x| is commensurable
with a wavelength l. However, the near-field is of little interest for the crack detection, whereas comput-
ing expenses increase dramatically as R/l > > 1, up to practical inapplicability at a certain distance.
Therefore, the integral representation is used mostly as the starting point for the derivation of far-field
asymptotics.

The contribution of the pole f, derived using the residual technique, yields the surface Rayleigh wave
uRðxÞ ¼ bðu; zÞeifr=
ffiffi
r
p
þ Oðr�3=2Þ as r!1; z ¼ const; ð3:8Þ
where b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
if=ð2pÞ

p
Bðu; zÞQRðuÞ,
B ¼ resKja¼f ¼ K̂ð�f cos u;�f sin u; f; zÞ=D0ðfÞ;

K̂ : K ¼ K̂=D; QR ¼ Q0ð�f cos u;�f sin uÞ;

Q0ða1; a2Þ ¼ F ½q0� ¼
Z Z

D
q0ðx; yÞeiða1xþa2yÞ dxdy.
Since uR (x) is localized near the surface (B (u,z) decreases exponentially as z!�1), the contribution of uR

in the total asymptotic expansion only matters for distant detection of near-surface cracks. The deepened de-
fects are illuminated by the body waves, which asymptotics are derived from (3.1) and (3.2) by the steepest
descent method [5].

At first, the stationary points
a1;n ¼ �jn cos u sin w; a2;n ¼ �jn sin u sin w ð3:9Þ

of the oscillating exponential components expðið

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2

n � a2
p

� a1x� a2yÞÞ contributes in the asymptotics of the
initial double integral (3.2) as follows:
kðx� nÞ ¼
X2

n¼1

knðu;wÞeijnR=Rþ OðR�2Þ as R!1; ð3:10Þ

kn ¼ �ijnj cos wjKnða1;n; a2;n; anÞ=ð2pÞ;
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R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� nÞ2 þ ðy � gÞ2 þ z2

q
, u, w are the radius and angles of a spherical coordinate system centered at a

current point (n,g, 0)
x� n ¼ R cos u sin w; 0 6 u 6 2p

y � g ¼ R sin u sin w;

z ¼ R cos w; p=2 < w 6 p:

8><
>:
Two terms of the sum (3.10) describe spherical P and S waves for n = 1 and n = 2, respectively.
Then, replacing the convolution integral (3.1) with an approximate cubature formula with nodes

(nm,gm) 2 D, m = 1,2, . . . ,M (Fig. 1), we arrive at the body wave asymptotics of u0 in the half-space
u0ðxÞ �
X2

n¼1

XM

m¼1

knðum;wmÞq0ðnm; gmÞsmeijnRm=Rm as Rm !1; w > p=2 ð3:11Þ
in which um,wm,Rm are spherical coordinates of a point x in the systems centered at points (nm,gm, 0); sm are
cubature weight coefficients.

4. The scattered field

With the set forth approach the scattered field u1 is represented in the same explicit integral form like u0, but
via the unknown crack opening displacement v, which is determined from the integral equations arising when
the boundary conditions at the crack sides are satisfied. Let q1 ¼ T nu1jz1¼0 be a traction vector at the crack
plane z1 = 0, associated with the field u1 (in the local coordinates x1). This unknown field can be expressed
via q1 in the same manner as u0 through q0, i.e. using Green’s matrices k+, k� for the upper and lower
half-spaces z1 P 0 and z1 6 0. In the Fourier transform domain it takes the form
U�1 ða1; a2; z1Þ ¼ K�ða1; a2; z1ÞQ1ða1; a2Þ ð4:1Þ

while (2.5) is converted into
Vða1; a2Þ ¼ ½Kþða1; a2; 0Þ � K�ða1; a2; 0Þ�Q1ða1; a2Þ ð4:2Þ
V ¼ F ½v�; Q1 ¼ F ½q1�.
Equation (4.2) allows one to express Q1 through V
Q1 ¼ L1V; L1ða1; a2Þ ¼ ðKþ � K�Þ�1jz1¼0; ð4:3Þ
hence, q1 ¼ F�1½L1V�.
The integral equation with respect to unknown v follows then from the traction-free boundary conditions

(2.6) and (2.7). First, let us consider a deepened crack, when re-reflections from far surfaces are neglected, that
is when one can take u1 ¼ u

ð1Þ
1 (see (2.8)) without loss of accuracy. Only the first of the conditions (2.9) is

required for determining v = v(1) in this case
ðq1 þ s0Þjz1¼0 ¼ 0; ðx1; y1Þ 2 X. ð4:4Þ
Here s0 = C Tnu0 is a known traction vector at the crack plane related to the incident field u0, C is the rotating
matrix from (2.1) giving coordinates s0 in the local system. Eqs. (4.3) and (4.4) lead to the Wiener–Hopf inte-
gral equation
L1v �
Z Z

X
l1ðx1 � n1Þvðn1; g1Þdn1 dg1 ¼ gðx1; y1Þ; ðx1; y1Þ 2 X; ð4:5Þ
where l1ðx1Þ ¼ F�1½L1�; g ¼ �s0jz1
¼ 0.

To solve Eq. (4.5) with an arbitrary domain X, we use a variational Galerkin scheme [13] with axially sym-
metric (radial) d-like trial and test functions fk set at the nodes (x1,k,y1,k) covering X with a spacing h (Fig. 1)
v 	 vNðx1; y1Þ ¼
XN

k¼1

vkfkðx1; y1Þ; ð4:6Þ
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vk are expansion coefficients, fk = f ((x1 � x1,k)/h, (y1 � y1,k)/h), where f ðx; yÞ ¼ f ðrÞ; r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
is a radial

shape function of the basis, N is a number of the nodes. Consequently,
Vða1; a2Þ 	 VN ða1; a2Þ ¼ h2
XN

k¼1

vkeiðx1;ka1þy1;ka2ÞF ðaÞ; ð4:7Þ
F ðaÞ ¼ F ½f �.
Unknown vectors vk are obtained from the linear algebraic system to which equation (4.5) is reduced in line

with the Galerkin scheme. The axial symmetry of f allowed us to gain the most benefit in reducing numerical
costs spent on v obtaining. With Green’s matrices k± and expansion (4.6), integral representation of the scat-
tered field u1 in the crack coordinate system takes the form
u�1 ðx1Þ 	
1

ð2pÞ2
XN

k¼1

Z
C1

Z
C2

U�1;kða1; a2; z1Þe�iða1ðx1�x1;kÞþa2ðy1�y1;kÞÞ da1 da2; ð4:8Þ
where U�1;k ¼ K�ða1; a2; a; zÞL1ða1; a2ÞF ðahÞvkh2.
Far-field asymptotics follows from Eq. (4.8) in the same way that asymptotics (3.11) follows from Eq. (3.1):
u�1 ðx1Þ �
X2

n¼1

XN

k¼1

a�nkðuk;wkÞeijnRk=Rk; Rk ¼ jx1 � x1;kj ! 1; ð4:9Þ

a�nk ¼ �ij cos wkjjnh2K�nkLnkF kvk=ð2pÞ;

K�nk; Lnk; F nk are values of matrices and functions Kn,L1,F at the stationary points

a1;nk; a2;nk; ank ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

1;nk þ a2
2;nk

q
, which are of form (3.9) again but with uk, wk to be the angles of the local

spherical coordinate systems centered in the nodes (x1,k,y1,k, 0)
x1 � x1;k ¼ Rk cos uk sin wk; 0 6 uk 6 2p;

y1 � y1;k ¼ Rk sin uk sin wk;

z1 ¼ Rk cos wk 0 < wk 6 p;

8><
>:
Asymptotics (4.9) gives a fairy simple and fast approximation of the scattered field by the superposition of
spherical P and S waves radiated by elementary sources located at the nodes x1,k with amplitudes controlled
by vectors vk. It is significant that representations (4.8) and (4.9) are also true if v is obtained from a general
BIE taking into account the influence of the reflected field u2 (e.g. from Eq. (6.2) below).

We should add that the electromechanical reciprocity argument of Auld dC, which gives the same informa-
tion that is measured in pulse-echo scanning practice [17,16], can also be easily expressed through v:
dC ¼ � ix
P

Z Z
X

v � gdX 	 � ix
P

h2
XN

k¼1

vk � gk; ð4:10Þ

gk ¼ gðx1;k; y1;kÞ; v � g ¼
X3

i¼1

vðiÞgðiÞ.
5. Reflection from the surface

In regard to signals recorded at the half-space surface z = 0 we, in addition to the scattered field u1, have to
take into account the field u2 reflected from this surface. Along with the possibility of obtaining u2 at the points
of measurements using the well-known ray formulae for quasi-plane P and S waves reflection from a free sur-
face [14], it is possible to express u2 through an auxiliary stress vector q2 = � s1|z=0 = � TzC1u1|z=0 induced at
the surface by the incident field u1. In Fourier symbols it takes the same form
U2ða1; a2; zÞ ¼ Kða1; a2; zÞQ2ða1; a2Þ ð5:1Þ

with the same matrix K = K� like the representations of u0 and u1 above.
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Hence, for a deepened crack we can derive the asymptotics required from the inverse Fourier transform
u2ðxÞ ¼ F�1½U2� similarly to asymptotics (3.8) and (3.11) for u0, i.e. as a contribution of integrand’s poles
and stationary points of oscillating exponents. The main problem here is to derive Q2 explicitly in the global
coordinates starting from the expression for u1 in the local ones.

For a horizontal crack this problem is solved easily. The axes of the global and local coordinate systems can
be taken collinearly, so that the derivatives, and consequently the stress operator Tz, remain the same in the
both systems. For an inclined crack the mismatch of planes x1y1 and x,y, over which the Fourier transform is
applied to u1 and to s1, implies cumbersome analytical calculations. To avoid these difficulties, we propose the
next trick.

Let us, firstly, express u1 through the 3D Fourier integral
u1ðx1Þ ¼
1

ð2pÞ3
Z

C1

Z
C2

Z
C3

Û1ðaÞe�iða�x1Þ da ð5:2Þ
in which
Û1ðaÞ ¼ F z1
½U1� �

Z 1

�1
U1ða1; a2; z1Þeia3z1 dz1
is a 3D Fourier symbol depending on the vector of Fourier parameters a = (a1,a2,a3); (a Æ x1) = a1x1 +
a2y1 + a3z1. Starting from Eq. (4.1) we arrive at
Û1ðaÞ ¼ K̂ðaÞQ1ða1; a2Þ. ð5:3Þ
The explicit form of K̂ðaÞ ¼ F z1
½K�ða1; a2; z1Þ� is easily derived in so far as the transform F z1

acts upon no
more than two different simple functions of z1 entering in K± (a1, a2,z1) of form (3.3)
F z1
½e�rnjz1j� ¼ 2rn=dnðaÞ and F z1

½signz1e�rnjz1j� ¼ 2ia3=dnðaÞ;

where dnðaÞ ¼ a2

3 þ r2
n ¼ jaj

2 � j2
n; n ¼ 1; 2. It results in the expression
K̂ðaÞ ¼
X2

n¼1

K̂nðaÞ=dnðaÞ ð5:4Þ
with
K̂nðaÞ ¼
2

Dða1; a2Þ

�a3ða2
1Mn þ a2

2NnÞ �a1a2a3ðMn � N nÞ �ia1rnP n

�a1a2a3ðMn � NnÞ �a3ða2
1N n þ a2

2MnÞ �ia2rnP n

a1rnSn a2rnSn �ia3Rn

0
B@

1
CA; n ¼ 1; 2
Then, we can pass in Eq. (5.2) into the global coordinates by the rotation x1 = C (x � xc) with the same
rotation in the Fourier variables: a = Cb, b = (b1,b2, b3). With those substitutions the power exponent keeps
its form:
ða; x1Þ ¼ ðCb;Cðx� xcÞÞ ¼ ðb; xÞ � ðb; xcÞ

and vectors of Fourier parameters are also invariable in length: jaj ¼ jbj; jbj2 ¼ b2

1 þ b2
2 þ b2

3. In particular,
dnðaÞ ¼ dnðbÞ ¼ jbj � j2
n ¼ b2

3 þ r̂2
nðbÞ
here r̂nðbÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � j2

n

q
; b2 ¼ b2

1 þ b2
2; n ¼ 1; 2.

In the b domain application of the stress operator Tz is equal to multiplication by its Fourier symbol
T ðbÞ ¼ �il

b3 0 b1

0 b3 b2

db1 db2 ðdþ 2Þb3

0
B@

1
CA; d ¼ k=l;



E. Glushkov et al. / Wave Motion 43 (2006) 458–473 467
that is
s1ðxÞ ¼
1

ð2pÞ3
Z

C1

Z
C2

Z
C3

T ðbÞC1Û 1ðCbÞe�iðb;ðx�xcÞÞ db.
The explicit form of Q2 ¼ F xy ½�s1ðx; y; 0Þ� is easily derived then in terms of one-fold path integrals over C3,
which taking into account (5.3), (5.4) and (4.3) can be written in the following form:
Q2ðb1; b2Þ ¼ �
1

2p

Z
C3

T ðbÞC1

X2

n¼1

K̂nðCbÞ=dnðbÞL1ðCbÞVðCbÞeiðb;xcÞ db3.
With the residual technique these integrals over b3 can be calculated as a contribution of the poles
b3 ¼ �i r̂nðbÞ, which are the only roots of the denominators dn (b). As the result we arrive at the explicit ana-
lytical expression
Q2ðb1; b2Þ ¼
X2

n¼1

M̂nðb1; b2ÞV̂nðb1; b2Þeiðb1xcþb2ycÞer̂nzc ; ð5:5Þ
where M̂nðb1; b2Þ ¼ �T ðbÞC1K̂nðCbÞL1ðCbÞ=ð2r̂nÞjb3¼�ir̂n
and V̂nðb1; b2Þ ¼ VðCbÞjb3¼�ir̂n

.
It is important to keep in mind that Q2 in the form (5.5) is derived for any crack, therefore, it is valid not

only for deepened cracks but for sub-surface and surface-breaking ones too.
Let xR = (xR,yR, 0) be a point on the surface z = 0 in which the reflected signal is recorded. With regard to

eqs. (5.1), (5.5) and (4.7) the inverse integrals for u2(xR) are brought to the form
u2ðxRÞ 	
h2

ð2pÞ2
X2

n¼1

XN

k¼1

Z
C1

Z
C2

Kðb1; b2; b; 0ÞM̂nðbÞF̂ ðbÞer̂nzk vke�iðb1ðxR�xkÞþb2ðyR�ykÞÞ db1 db2; ð5:6Þ
where xk = xc + C1x1,k are nodes x1,k 2 X in the global system.

Then, the body-waves asymptotics of u2 (xR) as Rk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxR � xkÞ2 þ ðyR � ykÞ

2 þ z2
k

q
!1 is derived from

(5.6) by the same way as (3.11) for u0. It takes the form
u2ðxRÞ �
X2

n¼1

XN

k¼1

bnkðuk;wkÞeijnRk=Rk þ OðR�2
k Þ; Rk !1. ð5:7Þ
Here (uk,wk,Rk) are spherical coordinates of the vectors xR � xk;
bnk ¼ �ijnj cos wkjKðb1;nk; b2;nk; 0ÞM̂nðbnkÞF̂ ðbnkÞvkh2=ð2pÞ=ð�2r̂nkÞ;

bl;nk ¼ �jn cos uk sin wk; bnk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

1;nk þ b2
2;nk

q
;

b2;nk ¼ �jn sin uk sin wk:

8<
:

Thus, quite similarly to u1, at a far distance from the crack the field u2 (xR) is added up from spherical body
waves radiated by elementary sources located in the crack domain X at the nodes xk and controlled by the
vector coefficients vk but with the angle vector-functions bnk accounting in addition for the reflection from
the surface z = 0 and crack’s incline.

It is worthy to note that the contribution of the Rayleigh pole f into u2 (xR) vanishes exponentially as
zk!�1 due to the factors er̂nzk in the integrand (5.6).

6. Near-surface cracks

With near-surface cracks integral equation (4.5) fails to satisfy the total boundary condition on the crack
sides due to a tangible influence of the reflected field. In this case the integral equation has to be derived from
the condition (2.7)
ðq1 þ CT nu2 þ s0Þjz1¼0 ¼ 0; ðx1; y1Þ 2 X ð6:1Þ



Fig. 2. Transmission (solid line) and reflection (dot line) coefficients versus jsa for inclined and vertical cracks accordingly to Ref. [19] and
calculated using Eq. (6.2) (circle marks).

468 E. Glushkov et al. / Wave Motion 43 (2006) 458–473
instead of Eq. (4.4). Since, in line with (5.1) and (5.5), Tnu2 is also expressed via v, the resulting integral equa-
tion becomes of the form
L1vþ L2v �
Z Z

X
½l1ðx1 � n1Þ þ l2ðx1; n1Þ�vðn1Þdn1 ¼ gðx1; y1Þ; ðx1; y1Þ 2 X; ð6:2Þ
in which kernel l1 remains the same like in Eq. (4.5) while the Fourier symbol of l2 is expressed via the part of
Q2 (except v) multiplied by CTnK from the left. This equation takes explicitly into account all successive recur-
rent reflections from the crack and boundaries which affect on the crack open displacement v.

If the crack does not touch the surface, the Fourier symbol of l2 decreases exponentially as a!1 due to
the Q2 structure. Therefore, in this case the kernel l2 is a smooth matrix-function of x and n and the hyper-
singular kernel l1 (x � n) remains to be the main part of the integral operator, whereas, for a surface-breaking
crack, the addition l2 also becomes singular. Eq. (6.2), of course, is much more complicated than Eq. (4.5).
However, the explicit form of the kernels provides a chance to develop and implement low-cost numerical
algorithms of its solution as well.

In a 2D statement such a code has been created and tested against the numerical results by Hijden and Neerhoff
[19]. Fig. 2 gives plots of the transmission and reflection coefficients |T|2 and |R|2 for a Rayleigh wave diffracted by
a sub-surface crack of width 2a, depth zc = � d and angle of inclination h. There are plots versus jsa for an elastic
half-plane of Poisson’s ratio m = 1/3 obtained in [19] also via BIEs but with another form of the kernel represen-
tation. The results computed using Eq. (6.2) (1D BIEs with X � [�a,a] in the case) are marked off by circles.

The agreement of the results verifies the correctness of the analytical calculations above. Together with the
numerical control of the boundary condition Tz (u1 + u2)|z=0 = 0 it proves indirectly the validity of the asympt-
otics (4.9) and (5.7), as well as of the uc = u1 + u2 plots given below.

7. Numerical examples

Since C-scan (pulse-echo) images computed for a probe moving across the surface were already presented
(e.g. [15]), in this section we will concentrate on uc surface patterns and A-scan pulses obtained at different
surface points with a fixed probe position. These results are for deepened cracks when the first terms u

ð1Þ
1

and u
ð1Þ
2 provide a proper approximation of uc.

For definiteness sake, hereinafter all space sizes and distances are given in millimeters and frequencies in
megahertz, although these units of length l0 and of frequency f0 may be changed simultaneously (e.g. to mea-
sure distances in wavelengths) just keeping the inverse proportion l0 = const/f0.

At first, let us consider surface imprints of the scattered field diffracted by a circular crack of radius 3 locat-
ed under the co-ordinate origin (xc = yc = 0) at the depth zc = �60. The incident field is radiated by a vertical
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9 MHz P-probe: q0 = e3; (x0,y0) are the coordinates of the center of the contact area D, which is a 2 · 2 square
in the case.

A set of plots in Figs. 3 and 4 is for several probe positions from a remote one at (x0,y0) = (�60,0) up
to (x0,y0) = (0, 0) above the crack with horizontal (h = 0�, Fig. 3) and inclined (h = 45�, Fig. 4) crack’s ori-
entation. They demonstrate how the patterns of the amplitude of displacements |uc| at the surface z = 0 can
look like depending on the probe location and crack’s incline. The pictures are calculated in the plotted
area 180 · 120 for a steel sample of P and S waves velocities vp = 5595 m/s and vs = 3230 m/s. The integral
equation were solved using 97 nodes in the expansion (4.6). Since the matrix of the algebraic system, to
which Eq. (4.5) is reduced, can be inverted only one time, computation of the field everywhere except
the first point involves only asymptotics (4.9) and (5.7) that is not too expensive. For example, these
figures have been computed with a 700 MHz Pentium-III PC with an averaged speed of 150 points per
second.

Since measurements by a piezoelectric probe are comparatively slow, the A-scan transient signals are usu-
ally obtained at a few receivers’ positions with a fixed position of the source. The electrical output at the
receiver is modeled by Auld’s time-domain argument dC (t). In view of the usual relation between the values
in time and frequency domains:
dCðtÞ ¼ 1

p
Re

Z x2

x1

dCðxÞe�ixt dx;
it can be calculated by numerical integration basing on the values dC (x) computed for a dense enough set of
frequencies covering the required band [x1,x2].

Many numerical examples of A-scan pulses computed this way are presented in particular in the thesis [22].
For comparability sake, let us consider the same isotropic model, like in [22], with different positions of the
same receiving probe in addition to the pulse-echo records given there (Fig. 5).

Fig. 6 gives examples of dC (t) for a vertical P-probe with the square contact domain 10 · 10, placed pre-
cisely above the horizontal square 6 · 6 crack, located at the depth zc = �30 in an elastic half-space with
Fig. 3. Reflected fields |uc| with different probe positions; horizontal (h = 0�) crack.



Fig. 4. The same for a tilted (h = � 45�) crack.
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vp = 5760 m/s and vs = 3130 m/s. The probe excites pulses with the frequency spectrum given in a limited band
|f � fc| < Df
F ðxÞ ¼ cos2 pðf � fcÞ
2Df

� �
; x ¼ 2pf
(F = 0 if |f � fc| > Df). In the time-domain this spectrum yields a sharp signal. A draft of the signal associated
with the central frequency fc = 1 MHz and the bandwidth Df = 1 MHz considered in the examples is shown in
Fig. 5. In the Figs. 6–8 the time domain signals are normalized to fit the vertical size of subplots.

To calculate the plots dC (t) one has, first, to compute values dC (xn) for a set of frequencies xn covering the
required band with a certain frequency step hf. In the examples below we used hf = 0.01 MHz; that is Eq. (4.5)
had to be solved about 200 times for different xn = 2pfn, 0 6 fn 6 2 MHz. Then those tabulated data were
interpolated by splines so that the fast Fourier transform (FFT) procedure became applicable with any fre-
quencies and time steps.

There are three positions of the center xR = (xR, 0,0) of the receiving probe: xR = 0, 40 and 80. The first is
for the pulse-echo situation considered in [22]. Therefore, as expected, it looks very similar exhibiting the same
arrival time of the reflected pulses. The maximal pulse at tpp = 10 ls corresponds to the time of the PP
80400 x

z

0 5-5

f(t)

Fig. 5. Allocation of receivers and the form of input signal.
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Fig. 6. A-scan pulses dC (t) at different receiving points for a horizontal square crack.
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Fig. 7. The same for an inclined (h = 45�) elliptic crack.
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Fig. 8. Calculated received signals |uc (t)| for the same inclined (h = 45�) elliptic crack.
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response arriving; its duration is about 4 ls. Besides that, there is a small perturbation centered at the time of
PS signal arriving tps = 15 ls and a very small SS signal at tss = 20 ls. The arrival of PP, PS, SP and SS wave
packages becomes more visible at the remote point xR = 80 with the total ray way |xc| + |xR � xc| = 115.4. The
expected arrival times over this ray path tpp = 20, tsp = 24.4 and tps = 32.5 ls are indicated on the time axis by
arrows.

Fig. 7 displays dC (t) at the same receiver positions but with the inclined elliptic crack (semiaxes a = 4.8,
b = 2.4, h = 45�), while Fig. 8 gives pulses |uc (t)| for the same crack orientation. A correlation of these pictures
shows that the records of dC (t) and |uc (t)| provide qualitatively similar information about the structure of scat-
tered fields and about the times of different body waves arriving.

8. Summary

We have presented the analytically based low cost computer model of ultrasonic QNDE, which simulates
wave processes excited and measured by both traditional piezoelectric transducers and novel laser devices.

The model looks like a useful tool for solution the inverse problem. It makes it possible to determine crack
location by arrivals of scattered waves to different receiving points, as well as crack orientation and shape
through the analysis of surface spots of maximal reflection and then by fine fitting of the surface patterns.

Along with NDT, the model developed can be used in geophysics.
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