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Abstract

A material model for predicting the unknown elastic properties of the chemical vapor infiltrated carbon felts is proposed. Represen-
tative volume element of the studied material includes pyrolytic carbon matrix, randomly distributed carbon fibers (carbon felt) and
pores. The homogenization procedure for this composite consists of two steps: (1) homogenization of material response without pores,
i.e., homogenization of a media consisting of carbon fibers randomly distributed in an isotropic pyrolytic carbon matrix; (2) homoge-
nization of material response with presence of pores, i.e., homogenization of a media consisting of three-dimensional pores embedded
in the homogenized matrix from the previous step. The proposed model constitutes a theoretical basis for the numerical analysis of var-
ious carbon/carbon material systems that will be presented in the consecutive publications.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Isothermal, isobaric chemical vapor infiltration (I-CVI)
is widely used to produce carbon/carbon (C/C) composites
for high tech applications such as in aeronautical and space
industries [1]. Understanding of the relationship between
the complex microstructure of these materials (distribution
of the carbon fibers and that of the pores, texture of the
deposited pyrocarbon matrix [2]) and their mechanical
properties is essential in order to assess their full perfor-
mance potential for more advanced service applications.
However, micromechanical modelling of I-CVI densified
carbon/carbon composites presents several challenges.
Firstly, the constituents in the composite have different
length scales: the diameter of fibers used in such composites
is on the order of 10 lm while some pores reach up to hun-
0266-3538/$ - see front matter � 2006 Elsevier Ltd. All rights reserved.
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dreds of microns in dimensions. Secondly, pores are of
irregular shapes, and cannot be easily analysed using avail-
able elasticity solutions. And finally, the distribution of
pores and the texture and, consequently, the mechanical
properties of the pyrolytic carbon matrix are highly depen-
dent on the manufacturing parameters (pressure and tem-
perature distribution during infiltration).

To overcome these difficulties, this paper proposes a
homogenization procedure which consists of two steps:
(1) homogenization of material response without pores,
i.e., homogenization of a media consisting of carbon fibers
randomly distributed in an isotropic pyrolytic carbon
matrix; (2) homogenization of material response with pres-
ence of pores, i.e., homogenization of a media consisting of
three-dimensional pores embedded in the homogenized
matrix from the previous step.

The paper is organized as follows. Section 2 gives more
details on the CVI technology and provides typical exam-
ples of the microstructure of carbon fiber felt composites
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Fig. 1. Experimental setup.
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(CFCs). Section 3 presents the theory of micromechanical
modeling of these composites indicating all the assump-
tions and approximations made to obtain the closed form
predictions of the effective elastic properties. The numerical
simulation results for two types of CFCs are presented in
Section 4. Several possible pore distributions are computer
generated using a random number generator, and the influ-
ence of pore shapes on the overall properties is discussed.

2. Typical microstructures of I-CVI densified C/C

composites

The investigated samples are carbon fiber felts (CCKF
1001, Sintec, Germany) with initial relative porosity of
88 vol.% infiltrated by means of the I-CVI process at a tem-
perature of 1100 �C. The infiltration was carried out by the
group of Prof. Hüttinger at the Institute for Chemical
Technology of the University of Karlsruhe, Germany.
Fig. 1 shows the experimental setup used. Further details
on the infiltration procedure are given elsewhere [3,4].

The PAN-fibers forming the felts have a typical diame-
ter of 12 lm and are randomly oriented (Fig. 2a). The felt
infiltrated at 1095 �C, using pure methane at a total pres-
sure of 10 kPa during 150 h is presented on Fig. 2b and felt
infiltrated at 1070 �C, at 30 kPa methane pressure during
120 h is presented on Fig. 2c.

3. Material modelling

To predict the effective elastic properties of CVI CFCs
we generalize the two-step homogenization procedure ini-
Fig. 2. (a) SEM micrograph of the carbon fiber felt as received
tially proposed in [5] for unidirectional carbon/carbon
composites. We first homogenize the material consisting
of pyrolytic carbon matrix with randomly distributed car-
bon fibers, and then account for contribution of pores as
described below.

3.1. Non-interaction and Mori–Tanaka homogenization

procedures for pyrolytic carbon matrix with randomly

distributed fibers

Firstly, we homogenize material consisting of pyrolytic
carbon matrix and randomly distributed carbon fibers.
For this homogenizations step, carbon fibers are approxi-
mated by randomly oriented needle-shaped inclusions. Sev-
eral micromechanical schemes have been proposed in
literature to model such materials, see, for example, [6].
They differ, mostly, by how interaction between individual
fibers is taken into account. However, as shown in [7], pre-
dictions of several most popular schemes can be readily
obtained if the non-interaction approximation of the effec-
tive elastic properties is known. In this paper, we provide
the non-interaction and Mori–Tanaka predictions of the
overall material properties. The non-interaction approxi-
mation of the compliance tensor of the material is given
by [7]:
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(b) and (c) PLM micrographs of the investigated samples.
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where
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In these formulas, DM
ijkl is the compliance tensor of the

matrix material, dij is the Kronecker’s delta, fI is the volume
fraction of fibers, kI and kM are the bulk moduli, and lI

and lM are the shear moduli of fibers and matrix. These
moduli can be expressed in terms of the Young’s modulus
E and Poisson’s ratio m as

l ¼ E
2ð1þ mÞ ; k ¼ E

3ð1� 2mÞ .
3.2. Homogenization procedure for the effective matrix

consisting of fibers and pyrolytic carbon with pores

3.2.1. Eshelby solution for prolate and oblate spheroids

Next step of the homogenizations procedure is to insert
the pores in the homogenized material of the last step con-
sisting of pyrolytic carbon matrix and fibers. The pores are
three-dimensional and their shapes are irregular, so the
problem is very complicated. In the homogenization, we
will approximate the irregular shapes of the pores as spher-
oids with semi-axes a1, a2 and a3 such that

a1 ¼ a2 and a3=a1 ¼ a. ð3Þ

For a < 1 we obtain prolate and for a > 1 oblate spheroids
(see Fig. 3a and b).

Elastic fields around ellipsoidal inclusions are expressed
in terms of the so-called Eshelby tensor S [10]. To find the
components of this tensor for spheroidal pores we must
calculate parameter g [11], which is different for prolate
and oblate spheroids. For prolate spheroids,

g ¼ a

ða2 � 1Þ3=2
a a2 � 1
� �1=2 � arccosha

h i
; a > 1 ð4Þ

and for oblate spheroids,

g ¼ a

1� a2ð Þ3=2
arccos a� a 1� a2

� �1=2
h i

; a < 1. ð5Þ

Then the components of the Eshelby tensor are
(a)

Fig. 3. (a) Prolate spheroid
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where m is the Poisson’s ratio of the homogenized matrix.
The remaining components of this tensor can be calculated
from symmetry properties:

Sijkl ¼ Sjikl ¼ Sijlk ¼ Sjilk.
3.2.2. Compliance tensor of an ellipsoidal pore

To calculate the compliance contribution tensor H for
each pore of volumeV* = 4pa1a2a3/3 in the RVE of volume
V we can use the following formulae [11]:

H 1111 ¼
V �

VED
fð1� S2222Þð1� S3333Þ � S2233S3322

� m½S1122ð1� S3333 þ S2233Þ
þ S1133ð1� S2222 þ S3322Þ�g

H 1122 ¼
V �

VED
fS1122ð1� S3333Þ þ S1133S3322 � m½ð1� S2222Þ

� ð1� S3333 þ S1133Þ þ S2233ðS1122 � S3322Þ�g;
(b)

. (b) Oblate spheroid.



Fig. 4. A random orientation of an ellipsoidal pore is described by a point
of the unit sphere. The local coordinates of the pore are given by the axes
1,2,3 [8].
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H 1212 ¼
V �

VE
1þ m

2ð1� 2S1212Þ
ð7Þ

In the formulae above

D ¼ � det

S1111 � 1 S1122 S1133

S2211 S2222 � 1 S2233

S3311 S3322 S3333 � 1

2
64

3
75;

Sijkl are the components of the Eshelby tensor for each
ellipsoid, and E and m are the Young’s modulus and Pois-
son’s ratio of the material consisting of carbon fibers ran-
domly distributed in the pyrolytic carbon matrix. These
parameters can be calculated using the components of the
compliance tensor obtained in the previous step of the
homogenization procedure:

E ¼ 1

DMF
1111

; m ¼ �DMF
1122

DMF
2222

.

The remaining terms of tensor H can be calculated from
symmetry properties.

3.2.3. Compliance contribution tensor of all pores in the

global coordinate system

The obtained components of the compliance contribution
tensor H of each pore are given in the local coordinate system
of the pore. To evaluate contributions of all pores to the
effective elastic properties of the material, we have to per-
form transformation from local to the global coordinate sys-
tem common to all pores. Fig. 4 presents relative orientation
of these two coordinate systems. Axes 1, 2 and 3 define the
local orthogonal coordinate system of the pore used in for-
mulae (7). The components of the compliance tensor Htr

(presented in the matrix form) in global coordinate system
X1, X2, X3 and local coordinate system 1, 2, 3 are related as

½Htr� ¼ ½L�T½L�T½H�½L�½L�. ð8Þ
where [L] is the transformation matrix given by [8]:
½L� ¼
cos h cos b cos /� sin b sin / � cos h cos b sin /� sin b cos / sin h cos b

cos h sin b cos /þ cos b sin / � cos h sin b sin /þ cos b cos / sin h sin b

� sin h cos / sin h sin / cos h

0
B@

1
CA. ð9Þ

Table 1
Elastic properties of isotropic pyrolytic carbon and carbon felt [12,13]

Pyrolytic carbon Carbon felt

PyC 1 PyC 2

Em1 (GPa) mm1 Em2 (GPa) mm2 Ef (GPa) mf

25.0 0.15785 38.556 0.16 200 0.27
After application of this procedure to all pores, using the
non-interaction model, the overall compliance contribution
tensor of the pores HP can be calculated as:

HP ¼
X

i

Htr
i . ð10Þ

Then the effective compliance of the material with pores
Deff is

Deff ¼ DNI þHP or Deff ¼ DMT þHP . ð11Þ

4. Numerical results

4.1. Evaluation of the effective elastic properties of the

material consisting of fibers in the pyrolytic carbon matrix

On the nanoscale, pyrolytic carbon is an anisotropic
material with mechanical properties depending on the ori-
entation with respect to the nearest fiber surface. Its stiff-
ness is determined by the pressure and temperature
distribution during infiltration. But on the microscale, for
randomly oriented structures, the overall response of pyro-
lytic carbon can be assumed to be isotropic.

Table 1 provides the material properties of the carbon
felt and two sets of material constants for pyrolytic carbon
(PyC 1 and PyC 2) that we used in our simulations. The
corresponding homogenized materials are denoted as M1
and M2. Using these parameters and Eqs. (1) and (2), we
obtain the non-interaction and Mori–Tanaka predictions
of the homogenized material properties (Young’s modulus
and Poisson’s ratio) for various volume fractions of fibers.
The results for Young’s modulus and Poisson’s ratio are
presented in Figs. 5 and 6 correspondingly. The Poisson’s
ratio values for two materials are practically identical,
and that’s why only one graph is presented.
To analyze the difference between the non-interaction
and Mori–Tanaka approximations, we utilized the follow-
ing formulae:

Dif E ¼
EMT � ENI
�� ��

EMT
� 100%;

Dif m ¼
mMT � mNIj j

mMT
� 100% ð12Þ



(a) (b)

Fig. 5. Effective Young’s moduli Eeff
M1 and Eeff

M2 for homogenized material consisting of carbon fibers randomly distributed in the pyrolytic carbon matrix:
(a) PyC 1 and (b) PyC 2.
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Fig. 6. Effective Poisson’s ratio meff
M1 for homogenized material consisting

of carbon fibers randomly distributed in the pyrolytic carbon matrix
PyC 1.

Table 2
Material parameters of the homogenized material, which consists of PyC-
matrix with 12% volume fraction of fibers

M Non-interacting Mori–Tanaka

ENI (GPa) mNI EMT (GPa) mMT

M1 31.81 0.15375 30.87 0.15582
M2 47.33 0.15868 46.29 0.15951

Table 3
Number of oblate and prolate spheroids generated for different porosities
using random number generator

Porosity Number of
prolate spheroids

Number of
oblate spheroids

0.02 97 113
0.04 218 232
0.06 311 338
0.08 405 522
0.10 449 613
0.12 636 713
0.14 645 819
0.16 768 997
0.18 912 1012
0.20 1010 1122
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For different volume fractions of the fibers this difference is
presented in Fig. 7.

Analysis of the results shows that for small volume frac-
tions of fibers both approximations produce very close pre-
dictions of the effective Young’s moduli and Poisson’s
ratio. For example, at 15% and 20% of fiber volume frac-
tion, the deviation in the Young’s moduli is 3.7% for M1
(0.5% for M2) and 7% for M1 (0.93% for M2), correspond-
ingly. For the Poisson’s ratio this difference is even smaller.
(a) (b)

Fig. 7. Difference between the non-interaction and Mori–Tanaka approximations of: (a) effective Young’s moduli for M1 and M2; (b) effective Poisson’s
ratio for M1 as function of the fiber volume fraction.



.

.

.

.

.

.

(a) (b)

Fig. 8. Values of the effective Young’s moduli and Poisson’s ratios calculated for pore models as prolate and oblate spheroids.
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Thus, the obtained predictions for the composites
described in Section 2 having 12% of fiber volume fraction
are practically identical for both methods (Table 2).

4.2. Evaluation of the effective elastic properties of the

composite

In the infiltrated felts, random orientation of fibers leads
to random orientations and shape distributions of pores in
the produced composite. That’s why for numerical model-
ing of this material we can use a random number generator
to generate ellipsoidal pores with random orientational dis-
tribution and different volume fractions. The simulations
were performed for two distinct cases: for all prolate and
for all oblate spheroids. The limits for the spheroid eccen-
tricity parameter a (see (3)) were chosen based on the micr-
ographical observations of actual materials: 0.14 < a < 0.67
for prolate and 1.5 < a < 07 for oblate spheroids. The
examples of generated microstructures are presented in
Table 3. For randomly generated pores from the Table 3,
the compliance tensors and then the effective Young’s
moduli and Poisson’s ratios as functions of porosity were
calculated. The results for oblate and prolate models of
pores for materials M1 and M2 are presented in Fig. 8.
Note that the pore configuration in the real material is such
that both approximations, oblate and prolate spheroids,
have to be used. Thus, the obtained curves for effective
Young’s moduli and Poisson’s ratios can be considered
as the upper (only prolate spheroids) and lower (only
oblate spheroids) bounds for real material.

5. Conclusions

The proposed micromechanical modelling procedure
for infiltrated felt involves calculation of the fourth rank
compliance contributions tensors for fibers and pores. It
consists of the following two steps. First, the effective
compliance tensor of randomly distributed fibers in the
pyrolytic carbon matrix is obtained in closed form. For
this purpose, the non-interaction and Mori–Tanaka pre-
dictions of the overall material properties are used. The
effective material parameters of the fiber/matrix mixture
were calculated for different volume fractions of fibers.
The results of these calculations show that for the fiber
volume fractions below 20%, both predictions are very
close. From the microscopic observations it is known that
the volume fraction of fibers in the studied composites is
12% and thus any of the considered micromechanical
schemes can be used.

Second, the pores approximated as spheroids are
embedded in the homogenized material. To calculate the
compliance tensor of a spheroidal pore, the Eshelby solu-
tion is used. For the purpose of numerical calculations, a
random distribution of pores was simulated using a soft-
ware generator of random numbers. Microscopic observa-
tions show that the total porosity in this kind of
composites is not higher than 15% which justifies the
non-interaction approach used in the simulations. The
material parameters of the composite with different volume
fractions of pores have been evaluated. Numerical simula-
tions show that the assumption of prolate spheroids
(assumption that only prolate pore shapes are present in
the microstructure) produces higher prediction of the effec-
tive elastic modulus of the composite than the assumption
of the oblate spheroids. Since both shapes are present in
the actual microstructure, it is expected that the effective
stiffness of the composite will be bounded by ‘‘prolate’’
and ‘‘oblate’’ estimates.
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