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Abstract
The texture evolution and the Swift effect in NiAl under torsion at 727 ◦C
are studied by finite element simulations for two different initial textures. The
material behaviour is modelled by an elastic-viscoplastic Taylor model. In order
to overcome the well-known shortcomings of Taylor’s approach, the texture
evolution is also investigated by a representative volume element (RVE) with
periodic boundary conditions and a compatible microstructure at the opposite
faces of the RVE. Such a representative volume element takes into account
the grain morphology and the grain interaction. The numerical results are
compared with experimental data. It is shown that the modelling of a finite
element based RVE leads to a better prediction of the final textures. However,
the texture evolution path is not accounted for correctly. The simulated Swift
effect depends much more on the initial orientation distribution than observed
in experiment. Deviations between simulation and experiment may be due to
continuous dynamic recrystallization.
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1. Introduction

The intermetallic compound NiAl is of great interest for high-temperature applications since
it has a high melting point, a low density, a good corrosion resistance and a moderate creep
strength. Until now NiAl has not been applied as a structural material due to the inadequate
low-temperature toughness and ductility. Attempts to increase the ductility of NiAl by
alloying have not been successful (Noebe et al 1993). Alternatively, the mechanical properties
can be modified by changing the microstructure using thermo-mechanical processing which
induces specific grain size distributions and crystallographic textures (Skrotzki et al 2003).
Therefore, it is of significant importance to understand the mechanisms of texture formation
and grain interactions during the deformation. In this paper we focus on the understanding of
the crystallographic texture evolution in NiAl under torsion and the corresponding evolving
mechanical anisotropy.

The texture development and the mechanical anisotropy in NiAl are analysed numerically
by the finite element method. From the numerical point of view, the actual challenge is
to simultaneously describe the mechanical behaviour on two scales, i.e. the grain scale and
the macroscale. This is done by adopting Taylor’s assumption (Taylor 1938) that the grains
deform homogeneously. As a result, the stress in a material point can be computed as the
arithmetic mean of the stresses of a finite number of crystallites. The shortcomings of the
Taylor model are well known. Usually it gives only reasonable predictions of the texture
evolution in single-phase polycrystals. Furthermore, the texture sharpness is significantly
overestimated. In order to make more reliable predictions for the texture development we
also model a representative volume element (RVE) of NiAl by finite elements. By the
RVE approach the grain morphology and the grain interaction are taken into account. The
numerical results obtained by these two approaches are compared with experimental data by
Skrotzki et al (2003). Skrotzki et al performed free-end torsion experiments with cylindrical
specimens at 727 ◦C and determined the local crystallographic texture along the radial direction
of the cylindrical torsion sample, i.e. as a function of shear strain, with high-energy synchrotron
radiation. Due to different processing histories the specimens had two different initial textures,
determined globally by neutron diffraction of the whole torsion sample. Both of them were
approximate fibre textures. In one case the 〈1 0 0〉 direction, in the other case the 〈1 1 1〉
is parallel to the torsion axis. As a result of this comparison, we will learn whether an
elastic plastic material model that incorporates the slip system activity combined with the
Taylor homogenization scheme is applicable for the simulation of the texture evolution in
NiAl. Basically, the lack of other important physical mechanisms that contribute to the texture
evolution as well as the rather simple homogenization technique are the main sources of
expected disagreements between experimental findings and simulations. In order to estimate
the error from the Taylor homogenization we compare the corresponding simulations with
results from the more elaborated RVE technique. Any further discrepancy that is eventually
found stems therefore from the lack of known texture evolution mechanisms in the material
model, like dynamic recrystallization discussed later on.

The outline of the paper is as follows: in section 2 we describe the crystal plasticity model
which is used to model the mechanical behaviour on the grain scale. Section 3 briefly describes
the two homogenization schemes applied in this paper. In section 4 the numerical results are
discussed. The paper closes with a summary.

Notation and pole figure layout. Throughout the text a direct tensor notation is preferred. The
scalar product and the dyadic product are denoted by A ·B = tr(ATB) and A ⊗ B, respectively.
Traceless tensors are designated by a prime, e.g. A′. A superimposed bar indicates that the
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quantity corresponds to the macroscale. All pole figures are stereographic projections of the
〈1 0 0〉 lattice base vectors into the cross section of the cylindrical torsion samples. The sample
coordinate system is chosen with the shear direction horizontal, transverse direction vertical
and the shear plane coinciding with the sheet plane normal. The corresponding shear strain γ

and the maximum intensity denoted by I (in multiples of a random orientation distribution)
are given in each figure caption.

2. Crystal plasticity model

2.1. Elastic law

In the following we rely on the multiplicative decomposition of the deformation gradient F
into an elastic part Fe and a plastic part Fp (see, e.g. Mandel 1974, Krawietz 1986)

F = FeFp. (1)

The plastic deformation is assumed to be volume preserving such that Fp is unimodular, i.e.
its determinant is equal to one. Issues of the non-uniqueness of the decomposition are not
addressed here since they are not relevant in this context. It is only mentioned that for a
rate-independent behaviour the decomposition can be derived from the concept of material
isomorphisms (Bertram 1999, 2005). Such an approach also allows for a precise analysis of
the non-uniqueness of the decomposition.

Since the elastic strains in NiAl are small, each linear relation between generalized
stress and strain measures is applicable for the description of the elastic behaviour. We
assume a linear relation between the 2nd Piola–Kirchhoff stress tensor and Green’s strain
tensor in the undistorted configuration. In an Eulerian setting this assumption implies that
the Kirchhoff stress tensor τ is given as a linear map of the Almansi strain tensor (see e.g.
Böhlke and Bertram 2001)

τ = Ce[EA
e ], EA

e = 1

2
(I − F−T

e F−1
e ), (2)

with I being the unit tensor. The Kirchhoff stress τ is defined by the Cauchy stress tensor
σ and the determinant J of F through τ = Jσ. The Eulerian stiffness operator Ce is given
by the Rayleigh product of Fe and the constant reference stiffness tensor C̃

Ce = Fe � C̃ = C̃ijkl(Feei ) ⊗ (Feej ) ⊗ (Feek) ⊗ (Feel), (3)

where C̃ijkl are the components of C̃ with respect to ei . Here and in the subsequent sections
a tilde indicates that a quantity is formulated with respect to the undistorted configuration
which is characterized by the fact that corresponding symmetry transformations are elements
of SO(3) (Truesdell and Noll 1965).

The elasticity tensor can be specified by exploiting the cubic crystal symmetry of
NiAl. In this case C̃ has the following projector representation (Rychlewski and Zhang 1989,
Bertram and Olschewski 1991)

C̃ =
3∑

α=1

λαP
C
α (4)

with the projectors

P
C
1 = 1

3
I ⊗ I, P

C
2 = D − P

C
1 , P

C
3 = I

S − P
C
2 − P

C
1 . (5)
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I
S is the identity on symmetric 2nd-order tensors. The anisotropic part D is given by a dyadic

product of lattice vectors g̃i

D =
3∑

i=1

g̃i ⊗ g̃i ⊗ g̃i ⊗ g̃i . (6)

The eigenvalues λα can be written in terms of the components of C̃ with respect to the
orthonormal lattice vectors {g̃i} (i = 1, 2, 3): λ1 = C̃1111 + 2 ˜C1122, λ2 = C̃1111 − C̃1122 and
λ3 = 2C̃1212. Without loss of generality the reference lattice vectors g̃i can be identified with
the fixed sample system ei . Such a choice only affects the initial value of Fp.

2.2. Flow rule

We adopt the flow rule from finite crystal viscoplasticity theory which specifies the time
evolution of the plastic part Fp of F in terms of the shear rates γ̇α and the slip system tensors M̃α

ḞpF−1
p =

N∑
α=1

γ̇α(T′
e, τ

C
α )M̃α. (7)

The shear rates γ̇α are assumed to depend on the resolved shear stresses τα = T′
e · M̃α and the

flow stress τC
α in slip system α. Te = FT

e τFe
−T denotes the Mandel stress tensor. The Schmid

or slip system tensors M̃α = d̃α ⊗ ñα are rank-one tensors, which are defined in terms of the
slip directions d̃α and the slip plane normals ñα . The shear rates γ̇α are related to the resolved
shear stresses τα by the power law relation

γ̇α = γ̇0sgn(τα)

∣∣∣∣ τα

τC
α

∣∣∣∣
m

. (8)

The application of this power law is motivated by the fact that NiAl shows a rate-dependent
behaviour in the considered temperature range (Kloeden et al 2005). Such rate-dependent
approaches were proposed by Hutchinson (1976) and Asaro and Needleman (1985). The
material parameter m quantifies the strain-rate sensitivity of the material and is assumed to
be identical for all slip systems. It is generally temperature dependent and can be estimated
by strain rate jump experiments. NiAl forms a single-phase ordered B2-structure based on
the body centred cubic lattice. In the considered temperature range the potentially active slip
systems are given by the primary slip systems {1 1 0}〈1 0 0〉 and the secondary slip systems
{1 1 0}〈110〉 (Fischer-Bühner 1998). Figure 1 shows the two types of slip systems. Inspection
of the Schmid tensors shows that there exist six primary and six secondary systems (N = 12).
Three primary and two secondary slip systems are linearly independent. The initial value of
Fp is given by the inverse of the initial crystal orientation Q. Q is introduced in such a way
that it maps a reference basis ei onto the lattice vectors gi at time t : gi (t) = Q(t)ei . If gi (t)

is known, the orthogonal tensor Q can be computed by Q = gi (t) ⊗ ei .

2.3. Hardening law

In the following the primary slip systems {1 1 0}〈1 0 0〉 are identified with the indices 1 . . . 6.
The secondary slip systems {1 1 0}〈1 1 0〉 have the indices 7 . . . 12. The activation of slip
on the primary and the secondary systems can be described by the corresponding critical
resolved shear stresses of the 12 activatable slip systems τC

1...6 = τC〈1 0 0〉 and τC
7...12 = τC〈1 1 0〉.

The hardening behaviour has been described by only one isotropic internal variable τ 〈1 0 0〉

that represents the resolved shear stress for the six {1 1 0}〈1 0 0〉 slip systems. The critical
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Figure 1. Primary ({1 1 0}〈1 0 0〉) and secondary ({1 1 0}〈1 1 0〉) slip systems in NiAl (n: slip plane
normal, b: Burgers vector).

resolved shear stress for the six {1 1 0}〈1 1 0〉 slip systems is determined based on the
assumption τC〈1 1 0〉/τC〈1 0 0〉 = k = f (T ). The material parameter k enters the material model
as a temperature dependent constant (Miracle 1992). The resolved shear stress τ 〈1 0 0〉(γ ) is
assumed to depend on the total accumulated shear strain in both the primary and the secondary
slip systems

γ =
∫

γ̇ dt, γ̇ =
12∑

α=1

|γ̇α|. (9)

The function τ 〈1 0 0〉(γ ) is specified by superimposing the Voce hardening law in a rate-
independent fashion and a linear hardening law

τ 〈1 0 0〉(γ ) = τ0 + (τ∞ − τ0)

(
1 − exp

(
− θ0

τ∞ − τ0
γ

))
+ θ∞γ. (10)

It is assumed that the cast specimen is not prestrained. The deformation starts at t = 0,
which yields γ (t = 0) = 0 as the initial condition for the evolving total accumulated shear
strain. The interpretation of the involved hardening parameters is straightforward. θ0 + θ∞
is the initial slope of the hardening curve and θ∞ is the asymptotic slope for large γ . τ0

is the initial critical resolved shear stress and τ∞ is the asymptotic flow stress of the Voce
type part of the hardening law. The aforementioned simplifications are quite crude but are
introduced for two reasons. There is only one effective stress–strain curve from a proportional
loading test (compression) which can be used for the identification of the hardening parameters.
Furthermore, each additional internal variable in the crystal plasticity model increases the
numerical costs significantly since a large number of crystal orientations is attached to each
integration point of the finite elements in the numerical simulation discussed later.

3. Finite element simulation of texture evolution in NiAl

3.1. Kinematics of torsion and simple shear

A simple shear deformation is defined kinematically by the deformation gradient F = I+γ d⊗n
where d and n denote the shear direction and the shear plane normal, respectively. γ is the
shear number. The simple shear deformation is a homogeneous deformation. In contrast to
simple shear, torsion is an inhomogeneous deformation mode. The corresponding deformation
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Figure 2. Deformed finite element mesh in an intermediate state of torsion deformation.

Figure 3. Torsion-deformed cylindrical specimen after one revolution. The marker lines were
vertical before deformation (Skrotzki et al 2002).

gradient (fixed-end torsion, no axial straining) can be written as F = Q(φ)(I + γ d(�) ⊗ n).
Here the shear number γ is given by γ = RD, where R denotes the initial radius of the material
point and D the twist of the circular specimen. � is the angle (cylindrical coordinates) of the
material point in the undeformed placement and φ = Φ + DZ is the corresponding angle in
the deformed placement. Z is the axial coordinate of a material point. Q(φ) is a proper
orthogonal tensor which turns vectors around n with angle φ. The shear direction is parallel
to the circumference of the cylinder, whereas the shear plane normal is aligned with the
cylinder axis of the specimen. Hence torsion is the composition of a position-dependent local
simple shear deformation and a rotation. When performing the RVE simulations we will take
advantage of this fact.

3.2. Specimen geometry and boundary conditions

The diameter and the length of the cylindrical specimens are both 10 mm. In the experiment
the boundary conditions are such that the plane surfaces perpendicular to the cylinder axis
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Figure 4. Experimental and simulated equivalent stressσ versus true strain ε (uniaxial compression,
ε̇ = 10−4s−1, T = 700 ◦C, Fischer-Bühner (1998)).

are parallel during the deformation process. The cylinder can freely elongate and contract in
the axial and the radial direction. The revolution of the bottom plane of the cylinder is equal
to zero. The other top plane undergoes one revolution in 15 000 s which corresponds to a
maximum shear rate at the outer surface of 2 × 10−4 s−1 and a maximum final shear strain
of approximately π . Figure 3 shows an experimentally deformed cylindrical specimen. Note
that the discretization shown in figure 2 could be replaced by a discretization of one row of
elements along the axial direction, since due to the boundary conditions no gradients along
this direction are induced.

3.3. Material parameters

The elastic constants are taken from Miracle (1992). The temperature-dependent strain-rate
sensitivity parameter m and the ratio of the critical resolved shear stresses k = τC〈1 1 0〉/τC〈1 0 0〉

are given by Fischer-Bühner (1998). The hardening parameters have been identified by a
Taylor type texture simulation of a uniaxial compression compared with experimental data
documented by Fischer-Bühner (1998). Due to the fact that the parameters are defined on the
grain scale while the experimental data specify macroscopic quantities, an inverse identification
problem has to be solved. The initial texture is discretized by a set of 900 uniformly distributed
crystal orientations in order to approximate an almost isotropic crystal orientation distribution
that is found in cast, forged and annealed NiAl. The maximum axial true strain is -0.8,
while the true strain rate is 10−4 s−1. The identification of the material parameters is done
by the trial-and-error method. The comparison of the experimental stress–strain curve with
the numerical results can be seen in figure 4. θ0 + θ∞ mainly influences the initial slope of
the effective hardening curve. θ∞ dominates the asymptotic slope for large strains. Together
with the Taylor factor (for the definition in the context of a rate-dependent behaviour see, e.g.
Böhlke 2004) τ0 determines the initial flow stress. τ∞ influences the asymptotic yield stress
in the absence of a linear hardening. The material parameters are given in table 1.

3.4. Initial texture

Due to different processing histories the specimens have two different initial textures. In one
case a complete fibre texture with the 〈1 1 1〉 crystal direction coaxial to the cylinder axis
(〈1 1 1〉 sample) can be observed. In the other case, the initial texture can be described by a
partial 〈1 0 0〉 fibre with the 〈1 0 0〉 direction being coaxial to the cylinder axis (〈1 0 0〉 sample).
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Table 1. Mechanical material parameters of NiAl at 700 ◦C.

Elastic law C1111 (GPa) 188
C1122 (GPa) 123
C1112 (GPa) 93

Flow rule γ̇0 (s−1) 10−3

m — 13

M̃α — {1 1 0}〈1 0 0〉, {1 1 0}〈1 1 0〉
k — 2

Hardening rule τ0 (MPa) 12
τ∞ (MPa) 27
θ0 (MPa) 120
θ∞ (MPa) 12.5

Figure 5. Initial textures in experiment (Skrotzki et al 2002) and simulation. Experiment: (a)
〈1 1 1〉 sample, (c) 〈1 0 0〉 sample. Simulation: (b) 〈1 1 1〉 sample, (d) 〈100〉 sample.

Experimental 〈1 0 0〉 pole figures are shown in figures 5(a) and (c).
The initial textures in the NiAl samples are approximated by discrete sets of single crystals.

The fibres are generated by aligning a reference crystal such that the 〈1 1 1〉 or the 〈1 0 0〉
direction is parallel to the torsion axis. Then a set of crystals approximating the fibre is
obtained by rotating the reference crystal around the fibre axis. The distance to the nearest
neighbours is constant. Although the 〈1 0 0〉 sample shows only a partial fibre, the texture is
approximated by assuming it would be complete. This approximation has the advantage that
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the problem becomes axisymmetric as discussed below in detail. Note that the 〈1 1 1〉 and the
〈1 0 0〉 fibres have a three- and a four-fold symmetry, respectively. As a result, the crystals
are rotated only in the range of 120◦ and 90◦. Both fibres are approximated by 100 single
crystals (see figures 5(b) and (d)). The pole figures corresponding to the numerical results
are generated by a superposition of Mises–Fischer distribution functions (Matthies 1980), the
mean values of which are determined by the discrete orientations used in the Taylor model.
The half-width is equal to 20◦.

Fibre textures induce a transversely isotropic material behaviour. Because of the
axisymmetry of the specimen shape and the transversely isotropic material behaviour the
boundary value problem is axisymmetric. Note that the anisotropy of the material and the twist
induced by the boundary conditions imply that one deals with a general axisymmetric state, i.e.
the stress state is fully three-dimensional. The modelling of the torsion test in an axisymmetric
setting leads to a significant reduction of the number of internal variables involved in the
solution of the boundary value problem.

3.5. Finite element simulation of free-end torsion based on the Taylor model

The aim is to perform a finite element simulation on the macroscale, i.e. to simulate
the torsion of a circular bar, and simultaneously to take into account the crystallographic
texture on the grain scale. The relation between the macroscopic and mesoscopic stress
and strain measures can be determined, e.g. based on Taylor type models (Taylor 1938,
Asaro and Needleman 1985). The Taylor model assumes a homogeneous deformation field
through the microstructure of polycrystals. It, therefore, satisfies the strain compatibility, but
not the stress equilibrium at the grain boundaries. The Taylor model gives reasonable qualitative
approximations of the crystallographic texture evolution in many single-phase cubic materials,
but is known to overestimate the stresses and the texture sharpness significantly. Different
approaches have been discussed in the literature in order to improve the full constrained
Taylor modelling of the texture evolution. The most simple one is based on a relaxation
of certain constraints of the deformation field (RC Taylor models). A typical example
is the LAMEL model by van Houtte (1982), which has been developed to predict rolling
textures. Roughly speaking, the model takes a stack of two grains, which is compressed,
and permits an inhomogeneous deformation. This allows to satisfy the stress equilibrium
for the shear stresses within the flattening plane. The disadvantage of the model is that it
is only applicable for one specific deformation mode. Although the LAMEL model is a
simple grain interaction model (GIA), the term GIA model refers to a more sophisticated
model that takes a cell of eight grains into account (Crumbach et al 2001). Due to the more
complex modelling of the grain interaction, the premises for the texture prediction are better
than for the LAMEL model. For a comparison see van Houtte et al (2002, 2006). Another
quite successful approach is given by the class of self-consistent approximations of the local
deformation behaviour (e.g. Molinari et al 1987), which satisfy the strain compatibility and
the stress equilibrium in an averaged sense. A purely numerical approach for a detailed
description of the microstructure is given by the RVE technique based on finite elements
and crystal plasticity (Bronkhorst et al 1992, Bertram et al 1998, Cailletaud et al 2003,
Kanit et al 2003), sometimes referred to as crystal plasticity finite element model (CPFEM).
An RVE is a statistically representative volume fraction of the microstructure. Such an
approach takes into account the grain morphology and the grain interaction.

If the crystallographic texture has to be taken into account at the integration point level, in
most cases Taylor type models are used since they are computationally much less expensive
compared with other homogenization schemes. In the simulation of the torsion test we adopt
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Figure 6. Microstructure of extruded and fully recrystallized NiAl (Skrotzki et al 2002).

the Taylor assumption of a homogeneous deformation gradient

F = F̄. (11)

For statistically homogeneous materials without pores and cracks the effective Kirchhoff stress
tensor is given by the volume average over the reference volume V . Assuming that the crystal
orientations of the grains are initially homogeneous, the following formula for the effective
Kirchhoff stress tensor can be obtained

τ̄ = 1

V

∫
V

τ dV =
M∑

β=1

νβτ β, (12)

where νβ is the (initial) volume fraction of grain β and τ β is the corresponding Kirchhoff stress
tensor. M is the total number of grains.

For the axisymmetric simulation with the commercial finite element code ABAQUS
(ABAQUS/Standard 2003) 200 CGAX4 elements are used which describe a general
axisymmetric state being fully three dimensional. In figure 2 the deformed finite element
mesh is shown for an intermediate state of deformation. The CGAX finite element simulation
is performed with 100 crystal orientations per integration point. The boundary conditions
are chosen according to the experimental ones discussed above. The differential equations
specifying the material model are integrated by applying the implicit Euler method in an
incrementally objective setting. The constraint of plastic incompressibility is fulfilled by a
projection method.

3.6. Finite element simulation with a representative volume element

For a reliable estimation of the macroscopic mechanical properties, the modelling of the grain
interaction and the grain morphology is of significant importance. However, both features are
neglected by the Taylor model. In order to obtain better predictions for the texture development,
a three-dimensional aggregate of polyhedral shaped NiAl grains is modelled by the RVE
approach using the commercial finite element code ABAQUS. Initially, the RVE has the shape
of a cube.

The microstructure of NiAl before deformation is shown in figure 6 (Skrotzki et al 2002).
The initial geometry of the grains in the RVE is idealized by a periodic Poisson–Voronoi
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Figure 7. Two-dimensional Poisson–Voronoi structure.

tessellation with 350 grains (see figure 8). This class of tesselations is topologically equivalent
to real microstructures in metals. Figure 7 shows a two-dimensional periodic Poisson–
Voronoi structure. The crystal orientations are chosen as described above. The displacement
fluctuations are assumed to be periodic on the boundary of the RVE. In order to make the
implementation of the periodic boundary conditions as simple as possible, the RVE is regularly
discretized by 25 × 25 × 25 = 15625 equal-sized C3D8 elements. This Gauss point method
(Kanit et al 2003) is the most simple meshing technique.

The total number of grains is quite small but allows for a coarse approximation of the
crystallographic texture. Due to the fact that periodic boundary conditions are used and
that about 44 finite elements are used to discretize one grain, it should be expected that the
RVE approach predicts a much softer texture compared with the Taylor model. Since the
grains interact and deform inhomogenously, the RVE approach also may predict other texture
components than the Taylor model. As discussed before, fixed-end torsion corresponds to the
composition of simple shear and a rigid body rotation. Taking this into account, the deformation
of any material point of the specimen can be approximated by a simple shear deformation.
Note that the axial effects are neglected by this approach. Nevertheless, the plastic anisotropy
inducing the axial strains under free-end torsion causes axial stresses in the case of simple
shear. These axial stresses are discussed below.

4. Numerical results and discussion

4.1. Texture evolution: simulation versus experiment

4.1.1. Texture evolution: 〈1 1 1〉 sample. In figure 10 the experimental (1 0 0) pole figures
(Skrotzki et al (2003)) are shown for the 〈1 1 1〉 initial fibre. The fibre axis which is initially
aligned parallel to the shear plane normal, rotates around the transverse direction to the shear
direction. During this rotation it falls apart and a texture component starts to develop. The
component is aligned with its 〈1 0 0〉 direction parallel to the shear direction and the 〈1 1 0〉
direction parallel to the shear plane normal. Using the notation {shear plane}〈shear direction〉
the component is written as {1 1 0}〈100〉.

In figure 11 the texture evolution is shown for the CGAX finite element simulation of
the free-end torsion experiment at different shear strains. It can be seen that the CGAX finite
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Figure 8. Initial mesh of the RVE with periodic microstructure.

Figure 9. Deformed mesh of the RVE (shear number γ = 2, the arrow indicates the shear direction,
deformation is unscaled).

Figure 10. (1 0 0) pole figures of the 〈1 1 1〉 sample, experimentally deformed in torsion at different
shear strains (Skrotzki et al 2003).

element simulation also predicts the {1 1 0}〈1 0 0〉 component, but the development is much
slower.

In figure 13(a) comparison of pole figures based on different homogenization schemes
for a shear strain of γ = 2 can be seen. Figure 13(a) shows the prediction of the CGAX finite
element simulation of the free-end torsion test. Here, the cylindrical specimen is discretized by
finite elements and the stress at the integration points is computed based on the Taylor model.
In such a type of simulation the grain scale and the macroscale are linked and the Swift effect
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Figure 11. (1 0 0) pole figure: FE simulation (free-end torsion, 〈1 1 1〉 sample, horizontal
axis = SD, vertical axis = TD).

Figure 12. (1 0 0) pole figure: predicted texture for different stages of deformation (FE based RVE
simulation, 〈1 1 1〉 sample, simple shear).

Figure 13. (1 0 0) pole figure: comparison of different homogenization techniques, (〈1 1 1〉 sample,
γ = 2).

can be analysed numerically. Figure 13(b) shows the (1 0 0) pole figure as it is predicted by the
Taylor model for a simple shear deformation which neglects the axial strain. The difference
between simple shear and torsion has been discussed above. It can be seen that the pole figures
are almost identical, which indicates that the axial strain is not of importance for the texture
evolution. Figure 13(c) shows the prediction of the RVE simulation. The pole figures for
subsequent stages of deformation are presented in figure 12. This type of simulation, which
takes into account the interactions between the grains, shows a significant difference to the
Taylor based simulations. Some texture components predicted by the Taylor simulation are
much sharper compared with the ones found in the RVE simulation than others, e.g. the pole
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Figure 14. Experimental (1 0 0) pole figure (〈1 0 0〉 sample, Skrotzki et al 2003).

Figure 15. (1 0 0) pole figure: FE simulation (free-end torsion, 〈1 0 0〉 sample).

found in the shear plane normal direction, which is represented in the centre of the pole figure.
The deformed mesh for a shear strain γ = 2 can be seen in figure 9.

4.1.2. Texture evolution: 〈100〉 sample. In case of the 〈1 0 0〉 initial partial fibre, the evolved
texture is shown in figure 14 (Skrotzki et al 2002). Similar to the other case, during simple
shear the fibre falls apart and a {1 1 0}〈1 0 0〉 texture component develops.

In figure 15 the texture evolution of the complete initial fibre is shown for the CGAX finite
element simulation of the free-end torsion experiment and different shear strains. It can be seen
that the CGAX finite element simulation predicts the {1 1 0}〈1 0 0〉 component. In figure 17
a comparison of the (1 0 0) pole figures based on different homogenization schemes is given
for the shear strain γ = 2. A comparison of the Taylor simulation with the RVE simulation
shows that the main difference is the sharpness of the predicted texture, and it seems that
the RVE calculation does not predict more texture components than the Taylor simulation
(see figure 17). Figure 17(a) shows the prediction of the CGAX finite element simulation of
the free-end torsion test. Figure 17(b) gives the (1 0 0) pole figure as it is predicted by the
Taylor model for a simple shear deformation. Again, this simulation indicates that the axial
strain is not of significant importance for the texture evolution. In figure 17(c) one can see
the prediction of the RVE simulation. This simulation also shows a weaker texture. The pole
figures for subsequent stages of deformation as predicted by the FE based RVE approach are
presented in figure 16. Here one can see that the fibre axis, which initially is aligned parallel
to the shear plane normal, rotates around the transverse direction.
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Figure 16. (1 0 0) pole figure: predicted texture for different stages of deformation (FE based RVE
simulation, 〈1 0 0〉 sample, simple shear).

Figure 17. (1 0 0) pole figure: comparison of experiment and simulation (〈1 0 0〉 sample, γ = 2).
(a) FE simulation (free-end torsion), (b) Taylor simulation (simple shear) and (c) RVE simulation
(simple shear).

4.1.3. General discussion. A comparison of experimental and simulated textures shows that
the main texture component {1 1 0}〈100〉 is best reproduced by the FE based RVE simulation.
However, the texture development under shear strain is not reproduced at all for both initial
fibres. In the case of the 〈111〉 fibre, the {110}〈100〉 component is formed much faster
in the experiment. This may be due to continuous dynamic recrystallization (CDRX, see
Gourdet and Montheillet (2003)) leading to a change from a low angle grain boundary (LAGB)
to a high angle grain boundary (HAGB) structure (Skrotzki et al 2003). Simultaneously,
limited migration of HAGBs takes place mainly driven by the difference between dislocation
densities of the grains located on the two sides of the boundary. On the one hand, besides
usual dynamic recovery, this grain boundary migration leads to an absorption of dislocations
from the grain interior, i.e. to additional softening. On the other hand, it gives rise to a
new grain subdivision by LAGBs, which may develop during further straining to HAGBs.
Hence, this continuous process of coarsening, subdivision and shearing yields a steady state
microstructure of constant average grain size, aspect ratio and grain shape evolution. These
aspects have not been taken into account in the simulations. In the case of the 〈100〉 fibre
besides the aspects described above, deviations from the ideal fibre may be of influence at low
shear strains. Actually, the experimental texture is more of the type of a cube component. In
future modelling these aspects have to be taken into account.

4.2. Swift effect

If polycrystals are subjected to finite, monotonic free-end torsion, a significant axial strain
can be observed in many materials (Böhlke et al 2003). This effect was first described by
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Figure 18. Axial elongation versus angle of revolution observed in experiments and simulations.

Swift (1947), who assumed that hardening mechanisms are responsible for the axial effects.
It is generally known as the Swift effect.

Swift (1947) performed his experiments to check whether straight radial lines remain
straight. The observations done on mild steel showed a change of the external dimensions
under plastic torsion, which was not in accordance with any known plasticity theory. Therefore,
similar tests were performed with 70–30 brass, stainless steel, aluminium, 0.5% carbon steel,
copper and cupro-nickel with different specimen geometries. All materials and all specimen
geometries tended to elongate under severe torsional strain. The axial strain accumulation
does not depend on the direction of the torsion. Swift also investigated the influence of
prior strain or heat treatment. Similar results have been obtained by Stüwe and Turck (1964),
Gil-Sevillano et al (1975) and Tóth and Jonas (1989). Swift assumed that the strain hardening
causes the axial effects. Billington (1976) contradicted this assumption by experiments. He
observed continuous elongations in iron independent of hardening. Nowadays, it has been
accepted that the axial effects are due to the crystallographic texture (Montheillet et al 1985,
Harren et al 1989).

The CGAX finite element simulations of the torsion test with NiAl indicate a strong
dependence on the axial elongation from the initial orientation distribution. The specimen
shortens and lengthens in the case of a 〈1 0 0〉 initial fibre and 〈1 1 1〉 initial fibre, respectively
(see figure 18). A comparison of the simulated and the experimentally observed Swift effect
shows that the tendency whether lengthening or shortening occurs, is accounted for in the
low-temperature range, where CDRX is less active. However, the length change is strongly
overestimated in the simulations. This is due to the extreme assumption of a homogeneous
strain field made in the Taylor model. At higher temperatures, even the tendency of the length
change cannot be predicted by the Taylor model. This may be due to the neglect of CDRX in
the material model. The CDRX (see section 4.1.3) leads to the formation of a cube component
which is responsible for shortening and thus compensating the lengthening effect in the 〈1 1 1〉
sample.

In the RVE simulation and the Taylor model calculation the deformation mode was a simple
shear, therefore no axial straining could be observed. However, it is possible to compare the
normal stresses that are induced due to the no-displacement boundary condition in the direction
of the shear plane normal. This is plotted in figure 19, where an interval of 0 < γ < 2 is under
consideration. One can see that in the case of the 〈111〉 fibre the restraining stress is negative,
which indicates that a compression stress is needed to maintain the height of the cylindrical
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Figure 19. Stress component normal to shear plane in simple shear deformation.

specimen. This means that the sample would elongate, which was found in the CGAX finite
element simulations (see figure 18). In the case of the 〈1 0 0〉 fibre the sample shortens, which
yields positive restraining stresses. In the Taylor model calculations, the maximum absolute
restraining stresses are about a factor of 3.5 and 2.2 times the maximum of the absolute
restraining stresses from the RVE simulations (in the 〈1 1 1〉 sample and the 〈1 0 0〉 sample,
respectively). This demonstrates the well-known fact that the stresses are overestimated when
Taylor’s assumption is applied. For the 〈1 1 1〉 fibre the overestimation is significantly larger
than for the 〈1 0 0〉 fibre. This corresponds to the findings that in the case of the 〈1 1 1〉 fibre
the texture evolution in the Taylor model differs more from the findings of the RVE calculation
as in the case of the 〈1 0 0〉 fibre.

5. Summary

The texture evolution in NiAl under torsion at 727 ◦C has been numerically analysed by two
different homogenization schemes. In one case the constitutive behaviour of the polycrystalline
NiAl is simulated based on Taylor’s assumption of a homogeneous deformation on the grain
scale. The advantage of this approach is that the texture evolution can be taken into account in
finite element simulations of the mechanical behaviour of macroscopic structural components.
The disadvantage is that due to the Taylor assumption, the interaction of grains is neglected. In
the other case a RVE with several hundred polyhedral shaped grains is modelled based on finite
elements. The advantage of this approach is that the interaction of grains is modelled, which
is of great importance for the prediction of the texture development and the plastic anisotropy.
The disadvantage of the RVE approach is that a direct link to finite element simulations on the
macroscale will cause high computational costs. The application of the two schemes allows
for an investigation of different aspects of the deformation behaviour of NiAl. The first method
bridges the gap between the grain scale and the macroscopic material response. The second
approach gives a refined picture of the micromechanical mechanisms. The numerical results are
compared with experimental data. The essential results of this investigation are the following:
the experimental texture at high shear strains is simulated best by an FE based RVE model.
The texture simulations that used the RVE technique reproduce the experiments better than the
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models that use the Taylor assumption, which was found as well by van Houtte et al (2006).
This is not a surprising result. However, the evolution path of the texture is not reproduced
correctly. This deficiency might be due to CDRX as well as an insufficient representation of
the initial texture in the 〈1 0 0〉 sample. The simulated Swift effect depends on the orientation
distribution. There is lengthening for samples with a 〈1 1 1〉 fibre texture, while samples with
a 〈1 0 0〉 fibre shorten during free-end torsion. Consequently, in the case of fixed-end torsion,
an axial compression or tension occurs, depending on the initial fibre. The latter effect agrees
with the experiment. The discrepancy between simulation and experiment is assumed to be
caused by CDRX, which even in the 〈1 1 1〉 samples produces a certain amount of oblique cube
component leading to shortening.
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