

Ausschreibung Bachelor/Master-Arbeit, Prof. Böhlke, ITM-KM, 2025/2026

Modellierung und Simulation von Relaxationsprozessen Modelling and Simulation of Relaxation Processes
-
Frederik Hille, M.Sc., Johannes Gisy, M.Sc., Prof. Thomas Böhlke
BSc-Arbeit: ⊠ MSc-Arbeit: ⊠
Theorie: ⊠ Numerik: ⊠ Experimente: □
flexibel
Vorkenntnisse der KMFF / FEM (Bachelor) oder CE / CIE / NKM (Master) empfehlenswert aber nicht zwingend notwendig

Themenbeschreibung

Abb.: Temperaturverlauf einer Viertelkreisgeometrie. Simuliert in Abaqus mithilfe des Fourier´schen Wärmeleitungsgesetzes.

Aufgabenstellung

In klassischen Modellen für die Beschreibung der Temperaturentwicklung wird häufig das Fourier'sche Wärmeleitungsgesetz $q=-\kappa g$ mit dem Wärmeleitkoeffizienten κ verwendet, wobei der Wärmestromvektor q proportional zu dem Temperaturgradienten g angenommen wird. Für isotrope starre Körper ohne Wärmequellen folgt damit als Wärmeleitungsgleichung die parabolische Laplacegleichung $\rho c_\varepsilon \dot{\theta} = \kappa \Delta \theta$, welche eine unphysikalische, unendliche Ausbreitungsgeschwindigkeit für Temperaturstörungen vorhersagt. Es existieren verschiedene Ansätze zur Erweiterung der klassischen Fourier'schen-Theorie, um stattdessen eine hyperbolische Wärmeleitungsgleichung mit einer physikalischen, endlichen Ausbreitungsgeschwindigkeit zu erhalten (Müller, 1966; Šilhavý, 1997). Dieses Vorgehen lässt sich auf weitere Nicht-Gleichgewichtsvorgänge, wie z.B. viskoelastisches Materialverhalten oder Diffusionsprozesse, erweitern.

Aufbauend auf vorangegangenen Abschlussarbeiten sollen die Auswirkungen dieser Ansätze von der/dem Studierenden zunächst im Kontext der Thermodynamik – im speziellen bei der Auswertung der klassischen Clausius-Duhem-Ungleichung (CDU) – theoretisch untersucht werden. Außerdem sollen neu eingeführte Materialparameter physikalisch interpretiert werden. Bei Interesse kann hierbei ein zusätzlicher Fokus auf die Kopplung verschiedener Effekte (z.B. Thermo-Viskoelastizität) gelegt werden. Anschließend ist eine numerische Implementierung in Abaqus vorgesehen, um vergleichbare Ergebnisse zwischen dem klassischen und einem/mehreren erweiterten Ansatzes/Ansätzen erzielen und auswerten zu können.

Literatur

- [1] Müller, I.: Zur Ausbreitungsgeschwindigkeit von Störungen in kontinuierlichen Medien, Dissertation, Aachen, 1966
- [2] Šilhavý, M.: The Mechanics and Thermodynamics of Continuous Media, Springer Berlin Heidelberg, Heidelberg, 1997