Veröffentlichungen 2021

(Bold Roman: Refereed Journal Articles)


Bauer J.K., Böhlke T.:
Variety of fiber orientation tensors.
Mathematics and Mechanics of Solids, 1-27 (2021)
DOI: 10.1177/10812865211057602

Bertóti, R.:
Modeling the flow-induced anisotropic effective viscosity of fiber suspensions by mean-field and full-field homogenization.
Doctoral thesis, Kontinuumsmechanik im Maschinenbau, KIT Scientific Publishing, Karlsruhe (2021)
DOI: 10.5445/IR/1000131222

Ernesti, F., Schneider, M.:
A fast Fourier transform based method for computing the effective crack energy of a heterogeneous material on a combinatorially consistent grid.
International Journal for Numerical Methods in Engineering (2021)
DOI: 10.1002/nme.6792

Ernesti, F., Schneider, M.:
Computing the effective crack energy of heterogeneous and anisotropic microstructures via anisotropic minimal surfaces.
Computational Mechanics (2021)
DOI: 10.1007/s00466-021-02082-6

Fernández, M., Jamshidian, M., Böhlke, T., Kersting, K., Weeger, O.:
Anisotropic hyperelastic constitutive models for finite deformations combining material theory and data-driven approaches with application to cubic lattice metamaterials.
Computational Mechanics, 67(2), 653-677 (2021)
DOI: 10.1007/s00466-020-01954-7

Gajek, S., Schneider, M., Böhlke, T.:
Efficient two-scale simulations of microstructured materials using deep material networks.
PAMM (2021)
DOI: 10.1002/pamm.202100069

Gajek, S., Schneider, M., Böhlke, T.:
An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components.
Comput. Methods Appl. Mech. Engrg. 384 (2021)
DOI: 10.1016/j.cma.2021.113952

Hessman, P. A., Welschinger, F., Hornberger, K., Böhlke, T.:
On mean field homogenization schemes for short fiber reinforced composites: Unified formulation, application and benchmark.
International Journal of Solids and Structures 230-231 (2021)
DOI: 10.1016/j.ijsolstr.2021.111141

Karl, T., Gatti, D., Frohnapfel, B., Böhlke, T.:
Asymptotic fiber orientation states of the quadratically closed Folgar-Tucker equation and a subsequent closure improvement.
Journal of Rheology 65(5), 999-1022 (2021)
DOI: 10.1122/8.0000245

Karl, T., Gatti, D., Böhlke, T., Frohnapfel, B.:
Coupled simulation of flow-induced viscous and elastic anisotropy of short-fiber reinforced composites.
Acta Mech 232(6), 2249-2268 (2021)
DOI: 10.1007/s00707-020-02897-z

Koch, T., Böhlke, T.:
The averaging bias - A standard miscalculation, which extensively underestimates real CO2 emissions.
Z. Angew. Math. Mech. (2021)
DOI: 10.1002/zamm.202100205

Köbler, J., Magino, N., Andrä, H., Welschinger, F., Müller, R., Schneider, M.:
A computational multi-scale model for the stiffness degradation of short-fiber reinforced plastics subjected to fatigue loading.
Computer Methods in Applied Mechanics and Engineering 373, 113522 (2021)

Krause, M., Böhlke, T.:
Stochastic Evaluation of Stress and Strain Distributions in Duplex Steel.

Archive of Applied Mechanics (2021)
DOI: 10.1007/s00419-021-01925-1

Kuhn, J., Spitz, J., Sonnweber-Ribic, P., Schneider, M., Böhlke, T.:
Identifying material parameters in crystal plasticity by Bayesian optimization.
Optimization and Engineering 1-35 (2021)
DOI: 10.1007/s11081-021-09663-7

Maassen, S.F., Erdle, H., Pulvermacher, S., Brands, D., Böhlke, T., Gibmeier, J., Schröder, J.:

Numerical Characterization of Residual Stresses in a Four-Point-Bending Experiment of Textured Duplex Stainless Steel.
Archive of Applied Mechanics 91, 3541-3555 (2021)
DOI: 10.1007/s00419-021-01931-3

Magino, N., Köbler, J., Andrä, H., Schneider, M., Welschinger, F.:
A multi-scale fatigue-damage model for fiber-reinforced polymers.
Proceedings in Applied Mathematics and Mechanics, 20:e202000091 (2021)

Pallicity, T.D., Böhlke, T.:
Effective viscoelastic behavior of polymer composites with regular periodic microstructures.
International Journal of Solids and Structures 216, 167-181 (2021)

Ruck, J.:
Modeling martensitic phase transformation in dual phase steel based on a sharp interface theory.

Doctoral thesis, Schriftenreihe Kontinuumsmechanik im Maschinenbau Nr. 18, KIT Scientific Publishing, Karlsruhe (2021)

Schneider, M.:
On non-stationary polarization methods in FFT-based computational micromechanics.
International Journal for Numerical Methods in Engineering 122(22), 6800–6821 (2021)

Schneider, M.:
A review of non-linear FFT-based computational homogenization methods.
Acta Mechanica 232, 2051-2100 (2021)
DOI: 10.1007/s00707-021-02962-1


Simon, N., Erdle, H., Walzer, S., Gibmeier, J., Böhlke, T., Liewald, M.:
Residual stresses in deep-drawn cups made of duplex stainless steel X2CrNiN23-4 - Influence of the drawing depth.
Forschung im Ingenieurwesen, accepted for publication (2021)

Trauth, A., Kehrer, L., Pinter, P., Weidenmann, K., Böhlke, T.:
On the effective elastic properties based on mean-field homogenization of sheet molding compound composites.
Composite Part C, Open Access 4 (2021)
DOI: 10.1016/j.jcomc.2020.100089

Walzer, S., Liewald, M., Simon, N., Gibmeier, S., Erdle, H., Böhlke, T.:
Improvement of sheet metal properties by inducing residual stresses into sheet metal components by embossing & reforming.
Appl. Sci. Eng. Prog. (2021)

Wicht, D., Schneider, M., Böhlke, T.:
Anderson-accelerated polarization schemes for FFT-based computational homogenization.
International Journal for Numerical Methods in Engineering 122(9), 2287-2311 (2021)
DOI: 10.1002/nme.6622

Wicht, D., Schneider, M., Böhlke, T.:
Computing the effective response of heterogeneous materials with thermomechanically coupled constituents by an implicit FFT-based approach.
International Journal for Numerical Methods in Engineering 122(5), 1307-1332 (2021)

Zink, T., Kehrer, L., Hirschberg, V., Wilhelm, M., Böhlke, T.:
Nonlinear Schapery viscoelastic material model for thermoplastic polymers.
Applied Polymer Science (2021)
DOI: 10.1002/app.52028