

From 3D-Tomography to lattice rotation in nano sized bicrystals What can be learned from local characterization methods Horst Vehoff, Michael Marx, Afrooz Barnoush

- EBSD and Orientation gradient
 mapping
- FIB Tomography
- Nano indentation
- Interaction crack grain boundary
- Nanopillar bicrystals
- Strength of interfaces
- Ultra fine grained materials

Sommerschule Herrenalp , September 2012

A Convergence angle 20 Direct beam Diffracted beam Reciprocal lattice points (expanded to disks because of beam convergence) Reciprocal lattice rods (due to specimen thickness) SOLŹ Range of Ewald -FÓLZ sphere 20. ZOLZ В Extremes of position of Ewald sphere (Range = 2α) Line of exact Bragg reflection 3.0 hkl relrod As seen in DP

Beugungsbild im TEM

Mit Hilfe eines divergenten Strahls werden mehrere Lauezonen erfasst

C

EBSD

Streuung der Elektronen an den Netzebenen in alle Richtungen auf zwei Kegelmäntel (Kosselkegel) gestreut.

geringen Öffnungswinkels des Kegels (um 1°) → Schnitt der Kegelmäntel mit dem Schirm Geraden.

Zu jeder Netzebenenschar gehören eine helle und eine dunkle Kikuchilinie

Schema der Bildung der Kikuchilinien

EBSD

Bildung der ,Electron Backscatter Diffraction Pattern' (EBSP)

ININI

Kikuchi-Linienbreite

Ebenenabstand d: d(200) > d(2-20) → Kikuchi-Bänder-Breite b b(200) < b(2-20)

Kristallsymmetrie

z. B. vierfältige Symmetrie um die[001]-Richtung durch symmetrischäquivalente <013> Zonenachsen

$$b \approx 2l\theta \approx \frac{nl\lambda}{d}$$

Automatischer Scan

Texture: {3 -1 7}<-4 9 3>

Methods - Orientation Gradient Mapping (OGM) Why: lattice rotations can be easier compared with simulations than dislocation densities (Chandrasekaran et al. 2003) $\theta_{\rm Avg}$

*E*_{pl, macroscopic}

Results for uniform and cellular dislocation structure are consistent

Dislocations and boundaries JNY

Analytical model of the problem

1.5°

Orientation gradient mapping Lattice rotations due to GND's

Cutting micro cracks near grain boundaries with the correct geometry

Techniques used to characterize grains

Sputtering process by FIB

1. M. D. Uchic, D. M. Dimiduk, Materials Science and Engineering A 400-401, 268-278 (2005)

FIB Damage

Experimental

- ✓ Mesoscopic length scale
- ✓ Molecular Dynamics (MD) simulation
- \checkmark 1 to 4 Mio. atoms
- ✓ Embedded atom potential

In cooperation with Dr. Ing. Afrooz Barnoush (WWM) and Dr. Mao Wen (Shanghai Jiao Tong University, China)

1.4 µm

The indentation size effect and grain boundaries

JNTN

TNTNT

Indentation size effect and lateral boundaries

Grain boundary in front of the crack tip:

fluctuating crack propagation rate

crack stop possible

which parameters describe the resistance of a grain boundary against crack propagation?

Experiments:

Same Boundary, distance between crack and boundary is varied
Same Crack, but different types of boundaries and grains

Interaction crack - grain boundary

3-D-problem: model of Zhai as example:

Mechanisms of interaction:

- inclination angle of the grain boundary?
- involved slip planes?
- => 3 dimensional information needed!
- => quantifying the model by 3D FIB tomography

Initiating a crack with a FIB cut notch:

Stage I crack parallel to a slip plane

Combining OIM with FIB

Schäf, Marx, Holzapfel, Vehoff, Mat. Sci. 2006

Analysis of the images enables a 3D reconstruction of the crack

TYTKT

Fatigue tests interrupted for replicas

- stress amplitude: $\sigma_A = 300$ MPa
- load ratio **R** = -0.1

Two cracks with different lengths interact with the same grain boundary

different crack propagation rates!

Some cracks stop or only move slower, why?

TNTNT

Influence of the microstructure

Mechanisms of interaction:

- large misorientation angle
- but only deceleration

Schäf, Marx, Vehoff et al: Acta Materialia March 2011

Mechanisms of interaction:

- same grain boundary
- second crack with identical crack parameters
- other inclination of the grain boundary

- possibility for the crack to propagate continuously through the grain boundary

- not determined by the misorientation angle of the active slip planes?

tilt to initial direction (11-1)

Mechanisms of interaction:

- grain boundary with special orientation

crack passes the grain boundary by alternating activation of (111) slip planes for a continuous propagation through the grain boundary

TNTNT

Quantifying the crack propagation:

1. for a slip band without grain boundary (Equilibrium Slip Bands, ESP):

 $\frac{da}{dN} = \mathbf{C} \cdot \Delta \mathbf{CTSD}^n$

BCS-model used by Tanaka¹: crack tip sliding displacement $\Delta CTSD = \left(\frac{2\tau * a}{\pi^2 A}\right) ln\left(\frac{c}{a}\right), \quad A = \frac{G}{2\pi(1-\nu)}$ $\tau^* = \text{shear-stress necessary to move a dislocation}$ $\frac{a}{c} = \cos\left(\frac{\pi\Delta\tau}{2\tau *}\right)$

parameters needed:

- constants C and n
- shear-stress τ^*

```
- Schmid-factor (to calculate \Delta \tau from applied load \sigma)
```

¹Tanaka K., Akiniwa Y., Nakai y., Wei R.P.: Engineering Fracture Mechanics, Vol.24, 803-819, 1986

Quantifying the crack propagation:

measuring the plastic zone size:

JNTNT

Quantifying the crack propagation:

- 2. for a slip band with grain boundary
- 2 a) plastic zone blocked by the grain boundary (Blocked Slip Band, BSB):

$$\Delta CTSD = \left(\frac{\beta \Delta \tau}{\pi A}\right) \left(c^2 - a^2\right)^{1/2} + \left(\frac{2\tau * a}{\pi^2 A}\right) \ln\left(\frac{c}{a}\right)$$
$$\beta = 1 - \left(\frac{2\tau *}{\pi \Delta \tau}\right) \arccos\left(\frac{a}{c}\right)$$

2 b) plastic zone spread in the neighboring grain (Propagating Slip Band, PSB):

resulting shear-stress τ^* determined by τ_1 and τ_2 of both grains:

$$\Delta CTSD = \left(\frac{2\tau * a}{\pi^2 A}\right) \ln\left(\frac{c}{a}\right) + \left(\frac{\tau * (\tau - \tau)}{\pi^2 A}\right) g(a; c, d)$$
$$g(a; c, d) = d \cdot \ln\left|\frac{\sqrt{c^2 - d^2} + \sqrt{c^2 - a^2}}{\sqrt{c^2 - d^2} - \sqrt{c^2 - a^2}}\right| - a \cdot \ln\left|\frac{a\sqrt{c^2 - d^2} + d\sqrt{c^2 - a^2}}{a\sqrt{c^2 - d^2} - d\sqrt{c^2 - a^2}}\right|$$

¹Tanaka K., Akiniwa Y., Nakai y., Wei R.P.: Engineering Fracture Mechanics, Vol.24, 803-819, 1986

Quantifying the crack propagation:

measuring the crack propagation rate by replica technique

TNTNT

Quantifying the crack propagation:

2. for a slip band with grain boundary

2 b) plastic zone spread in the neighboring grain (Propagating Slip Band, PSB):

calculation done with the parameters from the single crystal measurements no further fit-parameter!

TNTNT

Quantifying the crack propagation:

- 2. for a slip band with grain boundary
- 2 b) plastic zone spread in the neighboring grain (Propagating Slip Band PSB):

shear-stress τ^* determined by τ_1 and τ_2 of both grains:

 τ_2 determined for the adjacent grain by the slip system with the lowest Schmid-factor

Quantifying the crack propagation:

2. for a slip band with grain boundary and

different distances between notch tip and grain boundary

Dislocations and boundaries JNY

Analytical model of the problem

1.5°

Orientation gradient mapping Lattice rotations due to GND's

Camille Perrin, Stephane Berbenni, Horst Vehoff, Marcel Berveiller: Acta Mat. 58, 4639-4649, 2010

Nanopillar bicrystals, the effect of boundary strength

Micromechanical testing

TNTNT

 $\phi = 5 \,\mu m$

 $\phi = 1 \,\mu m$

Kheradmand Nousha; Vehoff Horst: ADVANCED ENGINEERING MATERIALS 14, 153-161, 2012

Interaction dislocations - boundary

🚳 Local

- Macroscopic bicrystals (Chalmers et al. from1937)
- Microscopic bicrystals (TEM)

40

Z.Shen et al., Acta Metallurgica 36,1988

Misorientation Mapping

A. Barnoush and coworkers, in preparation

48

Nanoindentation in einzelnen Körnern

Constitutive equations depend on grain size

50

Bo Yang, Horst Vehoff: Acta Mater., 55(3):849–856, February 2007

TNTNT

Strain rate sensitivity

Global results: AI (AIMg0.5Si0.4) route C

Strain rate sensitivity depends on grain size

Global Method: strain rate jump test

Strain rate sensitivity of Nk and mk Ni

Influence of grain size

Activation volume decreases with grain size

Indentation of single grains

ECAP-Ni: complex microstructure

Horst Vehoff, Delphine Lemaire, Kerstin Schüler, Thomas Waschkies, and Bo Yang. International Journal of Materials Research, 98(4):259–268, April 2007.

