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Crystal plasticity is governed by the motion of lattice dislocations.
Although continuum theories of static dislocation assemblies date back
to the 1950s, the line-like character of these defects posed serious problems
for the development of a continuum theory of plasticity which is based on
the averaged dynamics of dislocation systems. Only recently the geomet-
rical problem of performing meaningful averages over systems of moving,
oriented lines has been solved. Such averaging leads to the definition of a
dislocation density tensor of second order along with its evolution
equation. This tensor can be envisaged as the analogue of the classical
dislocation density tensor in an extended space which includes the line
orientation as an independent variable. In the current work, we discuss the
numerical implementation of a continuum theory of dislocation evolution
that is based on this dislocation density measure and apply this to some
simple benchmark problems as well as to plane-strain micro-bending.
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1. Introduction

In recent years, the growing demand for physically motivated continuum

descriptions of plasticity has led to a renewed effort to formulate continuum

theories of dislocation kinematics and dynamics. Already in the 1950s, Kröner [1],

Nye [2], Bilby and co-workers [3] and Kondo [4] had independently formulated the

classical continuum theory of dislocations based upon the definition of a second-

rank dislocation density tensor (in the following denoted as the Kröner–Nye tensor).

The authors were well aware that the Kröner–Nye tensor, if used as a measure of the

average dislocation state of a crystal, leads to a description of plastic deformation
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processes that is intrinsically incomplete. The main problem with classical dislocation

density measures such as the Kröner–Nye tensor is that its averaging over a volume

element containing many dislocation lines produces a measure that is invariant upon

shear deformations of the averaging volume. As a consequence, any spatially

homogeneous shear deformation can in principle not be reflected by the dynamic

evolution of the Kröner–Nye tensor or similar measures. This renders the classical

dislocation density measures highly problematic as foundations for a continuum

theory of plasticity.

Nevertheless, plasticity theories have been formulated which are explicitly or

implicitly based upon the classical dislocation density measures. As we shall discuss

in detail, theories such as for instance those formulated by Acharya and co-workers

[5–7] and by Sedláček et al. [8], apply to situations where dislocations form smooth

bundles, i.e. adjacent dislocation lines are approximately parallel and have the same

orientation. In more general situations, using the classical dislocation density tensor

as the basis of a plasticity theory leads to non-closed formulations which need to be

‘patched up’ by phenomenological assumptions. Models which focus on the

evolution of scalar densities of so-called statistically stored and geometrically

necessary dislocations (see e.g. [9] and references therein) are also essentially

phenomenological. Such models can be considered as heuristic approaches towards

formulating constitutive equations which allude to the physical mechanisms of

dislocation microstructure evolution. However, the constitutive equations are not

related to the evolution of a discrete dislocation system through systematic and

mathematically meaningful averaging procedures, and the models therefore remain

on the level of phenomenological expedients [10].

From the late 1990s on, Groma and co-workers developed a statistical approach

towards deriving not only the kinematic evolution of dislocation systems, but also

their internal interactions and stress driven dynamics, from systematic averages over

ensembles of discrete dislocation systems [11–13]. This approach draws heavily on

averaging techniques used in the statistical mechanics of interacting particle systems.

It is therefore restricted to simplified systems of straight edge dislocations, which can

be imagined as two-dimensional systems of point particles in the intersecting plane.

In an average representation, these systems can be described in terms of densities of

charged particles (‘positive’ and ‘negative’ dislocations distinguished by the two

possible orientations of the line direction with respect to the Burgers vector). It is not

obvious how to generalize these methods to three-dimensional systems of connected

dislocation lines, since the line-like nature of the dislocations and the continuous

distribution of dislocation line directions need to be accounted for.

A description of dislocation systems in terms of higher-dimensional density

measures dates back to Kosevich [14], who defines dislocation densities in a space

which includes parameters characterizing the line orientation as independent

variables. In the context of dislocation dynamics, a similar approach was used in

El-Azab’s pioneering work [15], who extended the methods of statistical mechanics

to systems of curved dislocation lines by using densities that evolve in a higher

dimensional state space. However, while taking into account the orientation of line

segments, both Kosevich and El-Azab do not directly account for the local

connectivity of the segments. To illustrate the problem, we observe that their

measures are not able to distinguish between a distribution of circular loops and a
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distribution of randomly oriented straight dislocation lines in a plane. The kinematic

properties of these two systems are, however, very different.

Only recently, the mathematical foundations required for transferring the

methods of statistical mechanics consistently to three-dimensional systems of

curved dislocations have been formulated by Hochrainer’s ‘Extended Continuum

Theory’ (ECT) [16]. This theory relies on a geometrical description of dislocation

lines and their averages, i.e. line densities, which uses the methods and formalisms of

differential geometry. The theory is a direct generalization of Kröner’s classical

continuum theory, which is contained as a special case.

In this paper, we explore ECT from the point of view of its numerical

implementation for a single slip geometry. Section 2 presents the theoretical

background and is divided into three parts: Section 2.1 briefly explains the

constitutive relations governing the stress-strain response of a (macroscopic) solid.

For completeness, we then introduce, in Section 2.2, Kröner’s classical continuum

theory and afterwards provide an overview of some of the theoretical aspects and

basic notations of ECT in Section 2.3. After discussing basic ideas of the numerical

implementation in Section 3, we explore, in Section 4, the evolution equations

numerically and apply them to a continuous distribution of dislocation loops and, as

a benchmark for kinematic consistency, to the expansion of a quasi-isolated single

dislocation loop. In Section 5, we then apply the theory to analyze the dislocation

evolution during bending of a free-standing thin film and investigate the size effects

associated with a simple Taylor-type hardening model. Conclusions are presented in

Section 6.

Throughout the paper we use the following definitions and conventions: vectors

and tensors are denoted by bold-face letters, whereas scalar quantities are written

non-bold (e.g. a as opposed to �). Partial derivatives are abbreviated as @xð�Þ :¼ @ ð�Þ
@x
, r

denotes the gradient operator and the divergence of a vector (tensor) field is written

as div; curl denotes the curl-operator. The vector product is denoted by �. For
double indices we assume the summation convention, if not stated otherwise. In

c¼ a� b, the tensor product is denoted by �; this operation reads for cartesian

coordinates in index notation cij¼ aibj. The symmetric part of a second rank tensor a

can be obtained by sym a :¼ 1
2
aþ aT
� �

with aT denoting the transpose of a matrix.

2. Theoretical background

2.1. Small strain elasto-plasticity

In continuum mechanics, the deformation of a body is usually characterized by a

smooth vector field of displacements u. The gradient ru is called the distortion

tensor and is in the following denoted by b:

b :¼ ru: ð1Þ

The symmetric part of the distortion tensor is called the strain tensor:

e :¼ symb ¼ symru: ð2Þ
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In small-strain elasto-plasticity, the distortion tensor is additively decomposed into a

stress-free or plastic part bpl and an elastic part bel. Accordingly, the strain is

additively decomposed as

e ¼ eel þ epl ¼ sym bel þ sym bpl: ð3Þ

The local stress r is related to the elastic part of the strain tensor by the constitutive law

r ¼ C : eel ¼ C : ðe� eplÞ, ð4Þ

where C denotes the fourth order tensor of elastic moduli and ‘:’ the doubly

contracted tensor product, in Cartesian coordinates �ij ¼ Cijkl"
el
kl. The last equation is

accompanied by balance equations for momentum and angular momentum, which in

the absence of body and inertial forces read

div r ¼ 0 and r ¼ rT, ð5Þ

respectively.

The purpose of constitutive modeling in plasticity theory is to derive evolution

equations for the plastic distortion bpl based on the current stress state and possibly

various internal variables of the material. ECT is an example of a theory where the

evolution of the distortion bpl is expressed in terms of internal variables which

represent statistical averages over the discrete dislocation pattern within the crystal.

2.2. Classical continuum theory of dislocations

Kröner [1] defined the dislocation density tensor a as

a ¼ curl bpl: ð6Þ

A different but equivalent definition was given by Nye [2]. In Equation (6), the curl

operator acts on the first indices of a tensor in the same way as it acts on a vector.

From the definition of the Kröner–Nye tensor it immediately follows that

div a ¼ 0, ð7Þ

which reflects the physical fact that dislocations cannot end inside a crystal.

When analyzing the information about the dislocation system that is contained in

the Kröner–Nye tensor, it is important to specify the spatial resolution with which

the plastic distortion is described. This is not always recognized in the literature, as

the very concept of ‘spatial resolution’ seems odd when we are talking about a

continuum theory. However, in order to understand the strengths and limitations of

the classical continuum theory of dislocations it is indispensable to analyze how the

information content expressed by the fundamental dislocation density measure

changes as we move across scales. We start this analysis on the smallest scale on

which a continuum theory can be used, i.e. we use continuous fields to describe the

distortion of the crystal but assume that these fields are known with sufficient

resolution such that individual dislocations can be ‘seen’ as singular lines.
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2.2.1. Dislocation density tensor for a discrete dislocation system

If the spatial resolution of the theory is such that all dislocation lines are captured

separately by the curl operation, the Kröner–Nye tensor completely characterizes the

dislocation system. In this case, a can be explicitly related to the configuration of the

discrete dislocation lines. We envisage a dislocation line as an oriented curve c(s)

which we assume to be parametrized by arc length s, i.e. dc/ds is the unit tangent

vector to the dislocation line. Furthermore, we assume that all dislocations share the

same Burgers vector b. In situations where dislocations of several slip systems are

present, the following considerations hold for each slip system separately, and the

total dislocation density tensor is obtained by summing over all slip systems.

We formally define a density measure along the dislocation line by

�cðrÞ ¼

Z Lc

0

�ðcðsÞ � rÞ ds, ð8Þ

where Lc is the total length of curve c and �(r) is the standard Dirac measure (‘delta

function’) in three-dimensional space. Using this measure, we may write the discrete

(indicated by superscript ‘d’) Kröner–Nye tensor as

ad ¼
X

c

�c
dc

ds
� b, ð9Þ

where the sum runs over all dislocation lines in the system. The local rate of plastic

distortion is given by Orowan’s relation which in tensorial form reads

@tb
pl,d ¼ �

X

c

�c v n� b ¼ �v� ad: ð10Þ

Here, v¼ vl is the local dislocation velocity, with v being the scalar velocity, and m the

unit vector in the dislocation glide direction. In writing down (10), we used that the

glide plane normal is given by n ¼ m� dc
ds
.

Defining the discrete dislocation current by J d¼ v� a
d and using the definition

of the Kröner–Nye tensor yields a kinematically closed evolution equation1 for ad:

@ta
d ¼ �curl J d ¼ �curl v� a d

� �
: ð11Þ

We now attempt to use these relations for constructing a coarse-grained theory.

In doing so, we ask whether or not (and under which circumstances) direct coarse

graining of the classical dislocation density measure leads to a loss of essential

information.

2.2.2. Statistical averaging

We denote by hð. . .ÞiV, r :¼ ð1=V Þ
R
Vr
ð. . .Þ=d3r the spatial average over some small

volume Vr of size V centered at r (for convenience of notation, the subscripts V and r

will be dropped in the following). A scalar measure of the average dislocation density

is given by the dislocation line length within Vr, divided by the averaging volume:

� ¼
1

V

X

c

Z

c\V

1 ds

¼
1

V

X

c

Z

V

Z Lc

0

�ðcðsÞ � r0Þd3r0 ds ¼
X

c

�c

* +

:

ð12Þ
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This measure characterizes the total dislocation density. Similarly, we define the

average dislocation density tensor by

a ¼ hadi ¼
X

c

�c
dc

ds
� b

* +

, ð13Þ

The average line direction is given by the unit vector

l ¼
h
P

c �c
dc
ds
i

h
P

c �c
dc
ds
i

�
�

�
� , ð14Þ

and we define the geometrically necessary dislocation density �G by

�G ¼
X

c

�c
dc

ds

* +�
�
�
�
�

�
�
�
�
�
: ð15Þ

The ratio �G/� is always smaller equal than 1 because of the triangular inequality.

The average dislocation density tensor can be written in terms of �G and l as

a ¼ �Gl� b: ð16Þ

In general, the average dislocation density tensor (16) does not fulfil the equation

@tb
pl ¼ �v� a, ð17Þ

if we interpret v as the pointwise vectorial average of the velocities along the

dislocation lines.

By use of (10) together with averaging of (11), we can attempt to obtain an

evolution equation for the averaged tensor. Writing this out, we obtain

@ta ¼ �curl
X

c

�cv�
dc

ds
� b

* +

: ð18Þ

The three-fold product within the average can be written as a product of averages if,

and only if, all dislocations within the averaging volume share the same tangent

vector l¼ dc/ds and velocity v. This is possible either if only one dislocation is present

(the discrete case) or if the dislocations form smooth line bundles. In these cases,

�¼ �G, a¼ �l � b, and (11) holds both on the local and on the averaged scale.

In the general case, however, the averaging volume contains dislocations of

different orientations. Thus, averaging leads to a reduced dislocation density �G5�,

and the dislocation density tensor does not obey (11) with v understood as the

average velocity. Instead, additional terms appear in the evolution equation. The

necessity of accounting for such terms, which have the formal structure of correlators

between the dislocation density and velocity/line direction, has been recognized in

the literature (see e.g. [17]). However, the derivation and closure of a higher-order

theory which properly accounts for such terms requires a formidable theoretical

effort. Until now, published attempts either remain at the level of declarations-of-

intention, or provide phenomenological patches which do not really resolve the

underlying theoretical problems.
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2.3. Extended continuum theory

To resolve the problem discussed above, the ECT distinguishes dislocation lines in a

given spatial point r according to their line direction l. As long as we are on the level

of a discrete description, this is simply redundant. However, the physical rationale

for this distinction becomes evident when we average over a mesoscopic volume:

while it is in general unrealistic to assume that all dislocations contained in a

mesoscopic volume have the same direction and move with the same velocity in

response to an acting stress, it is much more realistic to assume that those

dislocations which do have the same direction move in the same manner.

If dislocations move by glide only, their line direction can be parametrized by a

scalar variable, for instance the angle ’ between line direction and Burgers vector.

A point in configuration space is thus denoted by (r, ’). With regard to the numerical

examples treated subsequently, we restrict ourselves to introducing ECT only for this

situation. We note, however, that the theory is not restricted to this case but can

be generalized to include out-of-plane dislocation motion and multiple slip systems

(cf. [16]).

2.3.1. Definition of the second order dislocation density tensor

To define the dislocation density tensor and its averages in the three-dimensional

configuration space we proceed in close analogy to the classical theory. Unlike in the

classical case, however, we consider averages over so-called lifts of dislocation lines

to the configuration space instead of averages over the spatial dislocation lines

themselves. In order to introduce the concept of lifted curves we define a coordinate

system such that the 1-direction points into the direction of the Burgers vector and

the glide plane is spanned by the 1- and 2-directions. To each point c(s)¼ (c1(s), c2(s))

of a dislocation line we assign the angle ’ between the tangent dc/ds and the Burgers

vector, that is ’ðsÞ ¼ arctanðdc
2

ds
= dc1

ds
Þ. We define the lift C of a given curve c to the

three-dimensional configuration space as

CðsÞ ¼ ðC1ðsÞ,C2ðsÞ,C3ðsÞÞ :¼ ðc1ðsÞ, c2ðsÞ, ’ðsÞÞ: ð19Þ

Figure 1 gives a visualization of this concept. We note that the tangent to the

lifted curve

dC

ds
¼

dc1

ds
,
dc2

ds
,
d’

ds

� �

¼
dc

ds
, kðsÞ

� �

, ð20Þ

contains as third coordinate the curvature k(s) of the curve at c(s). As a consequence

of this implicit definition of a metric, the lifted curves C are not parametrized by arc

length in the configuration space.2

By transferring the definition of �c to the lifted curve C as

�CðrÞ ¼

Z

C

�ðCðsÞ � ðr, ’ÞÞ ds, ð21Þ
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we define the dislocation density tensor of second order in complete analogy to the

classical one as

aIIðr, ’Þ ¼
X

C

�C
dC

ds
� b

* +

: ð22Þ

The sum is again taken over all dislocations in the system, and the averages are taken

over a volume element in configuration space which is centered at r and ’.

It is illustrative to express also a
II as the product of a density function �(r,�) and a

generalized tangent which we denote by L(r,’). The definition of these two objects is

not completely analogous to the classical ones. The density function is defined as

�ðr,’Þ ¼
X

C

�C
dC

ds

* +�
�
�
�
�

�
�
�
�
�
r

, ð23Þ

where k�kr measures the length of the spatial projection of a vector in the

configuration space. The tangents to the lifted curves have the property

dC

ds

�
�
�
�

�
�
�
�
r

¼
dc

ds

�
�
�
�

�
�
�
� ¼ 1: ð24Þ

In (23), the averaging volume – a volume element in configuration space –

contains dislocations of one orientation only. Therefore, there is no cancellation –

e.g. of dislocations of opposite directions – during averaging of the spatial tangent

vectors. Therefore, the norm k�kr may be interchanged with the averaging. We thus

Figure 1. Continuous lifted curve in the configuration space. The lower, closed loop is
the spatial loop, the upper line is the lifted loop with additional orientation information.
The arrows attached to the lower loop indicate the spatial velocity, the arrows attached to the
upper curve indicate the generalized velocity along the line. The rotational velocity # is
the vertical component of the generalized velocity.
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find that �(r,’) gives the spatial line length per volume (of the configuration space)

of dislocations at r with direction l(’)¼ (cos ’, sin ’). The generalized tangent is

defined as

Lðr,’Þ ¼

X

C

�C
dC

ds

* +

�ðr,’Þ
:

ð25Þ

We note that the first two components of L(r,’) are just the canonical spatial direction

at ’ and the third component contains the average curvature k(r,’), that is

Lðr,’Þ ¼ ðcos ’, sin ’, kðr,’ÞÞ ¼ ðl ð’Þ, kðr,’ÞÞ: ð26Þ

From the definitions (22), (23) and (25) we easily find

aIIðr, ’Þ ¼ �ðr,’ÞLðr,’Þ � b: ð27Þ

The classical dislocation density tensor � can be evaluated from the density function

�(r,’) as

aðr, ’Þ ¼

Z 2�

0

�ðr, ’Þl’ d’� b: ð28Þ

The second order dislocation density tensor may be represented by a 3� 2 matrix

which reads

aIIðr, ’Þ ¼ �ðr,’Þ

b1 cos ’ b2 cos ’

b1 sin’ b2 sin’

b1kðr,’Þ b2kðr,’Þ

0

B
@

1

C
A

¼ �ðr,’Þ

cos ’ 0

sin ’ 0

kðr,’Þ 0

0

B
@

1

C
Ab, ð29Þ

where the latter follows from the chosen coordinate system for which we took the

1-direction parallel to the Burgers vector and hence find b¼ (b, 0).

We remark that in analogy to (7) also the generalized divergence of aII must

vanish (cf. [16]), which likewise reflects the physical fact that dislocation lines do not

start or end inside a crystal. With (29) this condition reads

cos ’@x�þ sin ’@y�þ @’ �kð Þ ¼ 0: ð30Þ

2.3.2. The generalized velocity

In the preceding section, we defined the dislocation density tensor aII as an average

of density functions characterizing discrete lifted curves. In order to obtain the

evolution of a
II, we need to consider the velocity of the lifted curve in the

configuration space. As may be seen in Figure 1 the velocity of the lifted curve

contains, besides the spatial (horizontal) velocity v orthogonal to the spatial

Philosophical Magazine 3705

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
S
a
n
d
f
e
l
d
,
 
S
t
e
f
a
n
]
 
A
t
:
 
1
0
:
3
0
 
1
1
 
A
u
g
u
s
t
 
2
0
1
0



dislocation line, also a component in the ’ direction which accounts for the rotation

of line segments during dislocation motion.

It is straightforward to show that the pseudo-scalar rotation velocity # of a

moving curve parametrized by arc length s is determined by the change of velocity

along the line. For the pseudo-scalars v, k and # we use the following sign

convention: we consider the pseudo-scalar velocity of a positively oriented loop as

positive if the loop expands (compare Figure 2). The curvature of such a loop is also

considered as positive. From this sign convention it follows that the pseudo-scalar

rotational velocity is

#ðsÞ ¼ �
dvðsÞ

ds
: ð31Þ

2.3.3. The evolution of aII

Using these conventions, we define the generalized velocity at a point C(s) of a lifted

discrete curve as

Vd ðsÞ ¼ ðv sin ’ðsÞ, � v cos ’ðsÞ,#ðsÞ
�
: ð32Þ

We note that unlike the spatial velocity, which is orthogonal to the dislocation

line, the generalized velocity is in general not orthogonal to the lifted curve.

The evolution of �
II In analogy with the classical definition we define the

generalized (discrete) dislocation current

JII,d ¼
X

C

Vd � �C
dC

ds
� b: ð33Þ

The evolution of the averaged dislocation density tensor of second order is obtained

in analogy to (18):

@ta
II
ðr,’Þ ¼ �curl JII,d

� �
ðr, ’Þ: ð34Þ

The curl operator again acts on the columns of the coefficient matrix of a tensor.

The difference to the evolution of the classical dislocation density tensor is that in

(34) the product appearing in the generalized dislocation current (compare (33)) can

be understood as a product of averages under much weaker assumptions on the

Figure 2. Sign convention for the line orientation ’, tangent l and normal l on the
parameterized unit circle.
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dislocation configuration. The most important assumption in this respect is that

nearby dislocations of the same line direction have the same curvature, which is

reasonable in quasi-static situations, where the curvature essentially balances the

local stress. Under this assumption, the average dislocation current can be written as

JII ¼ Vðr, ’Þ � aIIðr, ’Þ, ð35Þ

where the average velocity V(r,’)¼hV
di can be expressed in terms of the average

pseudo-scalar velocity v(r,’)¼hvi and rotation velocity #(r,’)¼h#i as

Vðr, ’Þ ¼ vðr, ’Þ sin’, � vðr, ’Þ cos ’,#ðr,’Þ
� �

: ð36Þ

Consequently, the evolution equation for the dislocation density tensor of second

order is obtained as

@ta
II
ðr, ’Þ ¼ �curl Vðr,’Þ � aIIðr, ’Þ

� �
: ð37Þ

2.3.4. Evolution equations for the scalar field variables

As we saw in (29), in the single glide situation under consideration a
II is completely

defined by the two scalar fields �(r,’) and k(r,’). Hence, the evolution equation for aII

can be translated into evolution equations for these functions. As the derivation of

these evolution equations involves either abstract methods or simple but lengthy

calculations we only give the result and refer the reader to [16] for details:

@t� ¼ � ðdiv ð�vÞ þ @’ð�#Þ
�
þ �vk, ð38Þ

@tk ¼ �vk2 � r2
LðvÞ � rVðkÞ: ð39Þ

Here, r2
L and rV denote the second derivative along the generalized line direction

and the first derivative along the generalized velocity direction, respectively. To

avoid cumbersome notation we dropped the index (r,’). In the following, if no indices

occur we will always imply that all quantities are evaluated at the point (r,’) in the

configuration space R�R� [0, 2�).

2.3.5. Evolution equation for the plastic distortion

The evolution equation for the plastic distortion b pl takes a similar form as (10) in

the classical formulation:

@tb
pl ¼

Z 2�

0

�ðr, ’Þvðr, ’Þd’ n� b: ð40Þ

This quantity provides the link to the material response on the continuum level as

introduced in Section 2.1.

3. Numerical implementation

3.1. Geometry

As in the preceding section we assume that all dislocations are moving on a single

glide system with glide plane normal n¼ e3 and Burgers vector b� be1. The system is
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assumed homogeneous in the e3 direction, i.e. we consider a statistically homoge-

neous assembly of active glide planes with constant average spacing.

3.2. Discretization of the problem

We define a discrete time step Dt9 tiþ1� ti with i2Nþ. A forward Euler scheme is

used for numerical time integration of the evolution equations. Hence, only values at

step ti are needed to compute the new values at step tiþ1; no additional history

variables need to be stored. This is beneficial for the required computer memory,

which is an issue as the multidimensional structure of the configuration space

requires a large amount of information to be stored for multiple fields. Furthermore,

we use a fixed mesh which demands a relatively fine space discretization with

corresponding large storage requirements.

The forward Euler time integration scheme is an unstable scheme which is only

first order accurate and suffers from dispersion. Our main reason for using this

scheme is that its simple explicit structure allows for an easy identification of the

separate effects stemming from the different terms in the evolution equations.

Implicit time integration schemes, on the other hand, require additional linearization

steps along with the iterative solution of the resulting difference equations. It is then

not straightforward to distinguish effects stemming e.g. from the discretization, the

initial values, the approximative nature of the Newton linearization or the partial

differential equations themselves. For the explicit Euler scheme used together with a

compatible choice of numerical derivatives, we could identify a ‘working regime’

within which this integration method was numerically reliable and could be used to

‘test’ more fundamental aspects of the numerical implementation.3

The three-dimensional configuration space is discretized by a uniform mesh.

It turned out that a sufficient resolution in the angular direction requires between 60

and 120 nodes. In the case of quasi-discrete lines, we use a discrete Gaussian

distribution to approximate the Dirac delta function. Since we use a fine spatial

resolution for this representation (e.g. about 60 nodes to discretize the part of the

Gauss function which is40.1% of the peak value) dispersive effects can be neglected.

Derivatives with respect to the configuration space are approximated by finite

differences. Derivatives which govern transport were approximated by an upwind

scheme. This is a numerical scheme which uses information about the flow direction

(e.g. the direction of propagation of a wave) to determine whether to use a forward

or backward difference stencil, such that only information from upstream of the flow

is used. Similar schemes are widely used to solve hyperbolic partial differential

equations in computational fluid dynamics and reduce oscillations in direction of

wave travel (e.g. [19]).

The upwind method based on first order forward and backward differences is

oscillation-free but at the cost of a very strong ‘smearing-out’ effect in direction of

wave travel caused by a large amount of ‘numerical viscosity’. We therefore use a

scheme based upon second order accurate forward and backward differences, which

is of much better quality than the first order scheme but slightly oscillatory [20]. As a

very simple remedy against the undershoot effect causing the oscillations, we cut off

the (unphysical) negative density values and distribute this negative amount over all
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nodes with positive density. This procedure causes a steepening gradient on the

downstream side of the wavefront and a slight increase of the wave’s maximum –

both of which are only minor effects in the cases we study.

All derivatives for non-convective (e.g. diffusion) terms were approximated by

central difference schemes of second order accuracy.

To determine the time step size we use the Courant–Friedrichs–Lewy

condition [22]

v
Dt

Dx

�
�
�
�

�
�
�
� � 1, ð41Þ

which serves as a (necessary) stability criterion for purely advective equations of

the form

@t�þ v@x� ¼ 0 ð42Þ

that are solved by explicit time integration schemes such as the forward Euler

scheme. In our simulations, we accordingly choose Dt � 0:1Dx=v̂ where v̂ is the

largest occurring velocity.

4. Test cases

In this section, we investigate two examples, both of which are simple enough such

that we still can easily predict the outcome while exploring the evolution equations of

ECT. The first example treats a homogeneous distribution of circular loops. This

case, which can be solved analytically, illustrates some basic properties of the theory.

The second example treats a single quasi-discrete circular dislocation loop. This

serves to illustrate and address issues related to the numerical discretization of the

system in a higher-dimensional configuration space.

4.1. Homogeneous distribution of expanding loops

For a homogeneous distribution of equidistant loops with the same initial radius r0
in an unbounded glide plane, all derivatives of �, k and v with respect to the

configuration space vanish. Then the system of evolution equations (38) and (39)

reduces to

@t� ¼ �vk, ð43Þ

@tk ¼ �vk2: ð44Þ

Equation (43) only consists of a production term, which yields the change of line

length during expansion of the loops, while (44) governs the change of curvature

k(t)¼ 1/r(t) due to the expansion. Note that here � and v are independent of ’. Thus,

we can directly obtain the evolution of the plastic distortion from (40) as

@tb
pl ¼ 2��bv n� b: ð45Þ
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We could have obtained the same evolution equation for the curvature by

considering the change of radius of a loop with initial radius r0 which expands with

the velocity v:

k ¼
1

rðtÞ
¼

1

k0
þ vt

� ��1
ð46Þ

) @tk ¼ �v
1

k0
þ vt

� ��2
¼ �vk2: ð47Þ

The evolution equation for the scalar density can then be obtained by considering

homogeneously distributed loops with mean center-to-center spacing d and initial

radius r0. The density is the line length 2�r(t) per volume, i.e. in terms of k

� ¼
2�

k

1

d 3
: ð48Þ

We obtain the evolution equation as time derivative of (48):

@t� ¼
2�

d 3
@t

1

k

� �

¼ ��
@tk

k
¼ �vk: ð49Þ

Hence, the case of a homogeneous distribution of equidistant, expanding or

shrinking loops with the same initial radius is correctly represented by the theory.

In our introduction, we mentioned that an essential shortcoming of Kosevich’s

and El-Azab’s continuum theories is manifested by the fact that the kinematic

behavior of a distribution of straight dislocation lines is not distinguished from that

of a distribution of loops with the same radii. The ECT, however, reproduces the

correct increase of line length for the evolving system of distributed loops, while for

the case of the straight line distribution the theory yields pure advection without

change in line length.

4.2. Quasi-discrete expanding circular loop

We again assume constant velocity and curvature such that there is no rotational

velocity and no change of curvature along the line. As all derivatives of v and k are

zero the evolution equations now simplify to

@t� ¼ �div ð�vÞ þ �vk, ð50Þ

@tk ¼ �vk 2: ð51Þ

The first part of the evolution equation for � governs spatial transport, whereas the

second part accounts for changes in line length due to expansion or shrinkage of

curved dislocation segments (here forming circular loops). The change of curvature

which goes along with the expansion or shrinkage of segments is determined by the

evolution equation for k.
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4.2.1. Numerical results: the problem of line fragmentation

As an approximation to a discrete dislocation loop we generate a continuous density

function by replacing the �-distribution in (21) with a Gaussian distribution. The

spatial projection of the initial distribution, that is the total dislocation density, is

depicted in Figure 3a. Time integration of the evolution equations (50) and (51) leads

to a spatial density distribution as shown in Figure 3b. The growth of the total

dislocation line length, as expressed by the volume integral of the density function

over the configuration space, is described correctly (Figure 3c), except for a small

deviation which is caused by discretization errors. Nonetheless, the density

distribution gets spatially fragmented as the loop expands. This fragmentation is

directly related to a growing divergence of aII. As the time derivative of aII is a curl

(compare (37)) the evolution equations themselves conserve the solenoidality of aII.

Number of steps

Numerical,

Numerical,

Analytical

L
in

e 
le

ng
th

M
ea

n 
di

ve
rg

en
ce

 p
er

 n
od

e

Number of steps

(a) Initial configuration (R = 30 nodes) (b) Expanded loop after 3500 steps 
with Δt = 0.1 and v =1.0 
(R = 3800 nodes)

(c) Temporal evolution of the system’s total
 line length

(d) Temporal evolution of the mean divergence
per node, (1/N nodes) Σ ||div αII||

Figure 3. Evolution of the (spatial) total dislocation density for an expanding loop as
obtained from solving Equations (50) and (51): (a) initial configuration, (b) end configuration.
The loop was discretized with 60 nodes in ’-direction. While the total amount of density
integrated over the plane is – up to a numerical error – predicted correctly (c), the loop heavily
fragments. This also displays in the evolution of the numerical divergence depicted in (d).
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However, finite difference schemes in general cannot guarantee that the discrete curl

and div operators fulfil the relation div curl¼ 0. This shortcoming manifests itself in

a strong increase of the mean divergence (1/Nnodes)
P
kdiv a

IIk as shown in

Figure 3d. This increase mirrors the visible fragmentation of the dislocation density

distribution during expansion of the loop. This fragmentation is unphysical.

Moreover, in the case of inhomogeneous velocity fields the temporal evolution

depends on derivatives of the density along the generalized line direction. The

numerical evaluation of these derivatives becomes completely inaccurate if loop

fragmentation becomes pronounced.

We note that other authors have observed similar problems, see e.g. [21] where

the problem is addressed by utilizing polar coordinates. This avoids fragmentation,

but the approach can be used only for the special case of loops with the coordinate

origin as their center, and not for the evolution of general distributions. The

remainder of this section deals with generic strategies that avoid fragmentation

within the framework of the chosen finite difference scheme.

4.2.2. Direct relaxation of the dislocation density tensor aII

A straightforward method to maintain solenoidality of the density distribution is to

minimize the divergence of aII by means of a sequence of ‘relaxation’ steps following

each time step. This process ensures iteratively that div a
II as a measure of

fragmentation is kept below a given tolerance. We minimize the total divergence of

a
II using the iteration formula

aIInew ( aIIold þ �grad div ð�IIÞ, ð52Þ

where � is a factor controlling the step size, which can be adjusted to achieve efficient

relaxation while avoiding ‘overshoots’. However, this method has clear drawbacks:

the operators grad div (�) introduce second derivatives which have a diffusive effect

and suppress fragmentation by homogenizing the dislocation density distribution

along the dislocation line. However, the diffusive effect also acts in the perpendicular

direction and causes a broadening of the line. Furthermore, the iteration scheme (52)

conserves aII and not �, causing unphysical changes in dislocation density during the

relaxation step. An improved relaxation scheme which conserves the total density

and avoids diffusive ‘flattening’ of the dislocation density distribution is obtained by

modifying (52) such that � is relaxed only along the line:

�new ( �old þ �r2
l �, ð53Þ

where the relaxation is again carried out to minimize
P
kdiv a

IIk.
Irrespective of the method used, relaxation of the system is computationally

expensive. Achieving a well-relaxed configuration requires multiple relaxation steps,

each of which is computationally about as expensive as one time integration step for

the evolution equations. To obtain a computationally more efficient method for

preserving solenoidality we take a closer look at the mechanism that leads to the

fragmentation and devise a remedy which restores the unfragmented state without

introducing an additional iterative process.
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4.2.3. Correction of line fragmentation by tangential diffusion

To better understand loop fragmentation from a geometrical point of view, we

consider a curved dislocation line in the configuration space (for simplicity we

envisage a circular loop but the argument extends to any curved line). To obtain a

continuous and differentiable density distribution we need to approximate the Dirac

�-function representing the discrete line in terms of continuous and differentiable

functions. Doing this on a discrete grid amounts to a discrete convolution with an

approximation function, i.e. we map (a subset of) R to (a subset of) N. For poor

resolution in ’-direction and a better resolution in x and y direction, Figure 4 shows

the density distribution obtained with Gaussian functions. It is important to realize

that due to the mapping, each of the ‘blobs’ representing segments of the dislocation

line is located on a particular ’-plane. As all points of the blob move into the same

direction v, which is perpendicular to the spatial line direction l(’), the blobs are

drifting apart during loop expansion and the line becomes fragmented.

We consider the effect of loop expansion at two successive time steps ti and tiþ1

and its impact on the change of arc length of a line segment si for the case of a

continuous lifted loop and for a lifted loop with discretized orientations. Figure 5

shows the geometrical relations between these two cases. To understand how the

differences affect dislocation density evolution, we may then think of a single lifted

line as as a bundle of parallel lines with partial Burgers vectors and characterize the

bundle by a space-dependent density �.

Let us first consider the expansion of a continuous lifted loop. As the loop

expands in the spatial plane a circle segment si with cone angle D’ gets elongated

to siþ1 (cf. Figure 5a). Expressing this relation in terms of the curvature we get

ki ¼
D’

s i
and kiþ1 ¼

D’

s iþ1
: ð54Þ

The increment of spatial arc length Ds from step iþ 1 to step iþ 1 then is defined

through

Ds :¼ s iþ1 � s i ¼ D’
1

kiþ1
�

1

ki

� �

: ð55Þ

The arc length increase stems from the fact that the line orientation along the circle

segment varies between ’0�D’/2 and ’0þD’/2 (cf. Figure 5a), leading to divergent

trajectories and a separation of the endpoints of the segment. For a bundle of lines,

the local density within the bundle remains unchanged while the overall density

increases as the bundle occupies more space.

The numerically discretized loop, on the other hand, consists of ‘straight’ line

segments (the orientation is constant within each segment). Hence, each point of the

segment translates into the same direction and no increase in line length Ds can take

place (thick black lines in Figure 5b). However, ECT is based on the description of

continuous lifted lines and therefore its equations are constructed to generate the

correct additional amount of density (which is governed by the production term �vk

of (38)). Unfortunately, after discretization the transport terms fail to locate this

amount in the right place.

The consequences are illustrated in Figure 6: in case of a bundle of continuous

lifted lines, Figure 6a, additional line length is introduced by stretching the curved
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segments while the density remains constant. In case of a bundle with discrete

orientations, Figure 6b, on the other hand, the segment length remains constant,

leading to fragmentation, while the additional line length causes an increase in density,

D� ¼
s iþ1

s i
� 1

� �

� ¼
Ds

s i
�: ð56Þ

This suggests we remedy the situation by redistributing the additional density along

the line.

The intuitively obvious method to do this is shown in Figure 6c: we might remove

the added density D� and distribute it to the left and right of the original segments,

such as to extend these segments by exactly the amount needed to restore

connectivity. Unfortunately, numerical implementation of this idea is not straight-

forward since we are working with a fixed spatial grid where the notation of ‘segment

length’ is not defined. Instead, we implement a diffusive spreading scheme: we

continue each segment along its direction into a sequence of segments of similar

orientation and length as shown in Figure 6d, and distribute the excess density on its

two nearest neighbors in this sequence. Conversely, if these neighbors already carry

density (and thus produce additional density D� during loop expansion) half of the

newly generated density from both neighbors is distributed back onto the original

segment.

Thus, at each time step the density at r is diminished by the newly created density

D�(r) but increased by the contributions D�L(r) and D�R(r) from the neighbors at

r� sil,

D�LðrÞ ¼
Ds

2s i
�ðr� s il Þ, ð57Þ

D�RðrÞ ¼
Ds

2s i
�ðrþ s il Þ: ð58Þ

Figure 4. Discrete density distribution which corresponds to a lifted line for a bad resolution
in ’-direction (12 nodes only) chosen deliberately for demonstration purposes. Each of these
blobs is moving as a whole along the direction indicated by the arrows.
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The total density change due to this diffusive redistribution is then given by

D�diffðrÞ ¼
Ds

2s i
�ðr� s il Þ þ �ðrþ s il Þ � 2�ðrÞ
� �

: ð59Þ

Taylor expansion around r of the first two density terms on the right-hand side yields

�ðr� s il Þ � �ðrÞ � s irl�ðrÞ þ
s i
� � 2

2
r2
l �ðrÞ

ð60Þ

�ðrþ s il Þ � �ðrÞ þ s irl�ðrÞ þ
s i
� � 2

2
r2
l �ðrÞ,

ð61Þ

Figure 5. Expansion of a continuous loop and the effect due to numerical discretization:
a lifted loop with radius ri expands by Dr affecting the lines’ inclination (the curvature) and its
length. In the case of the continuous loop expansion, the line segment gets rotated (by
reduction of curvature) and stretched. The numerical scheme takes care of the rotation by an
evolving curvature (not shown) but otherwise can only translate the segment without
stretching.
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where rl and r
2
l are the first and second derivatives along the spatial direction of the

line. Inserting the above two equations into (59) yields

@t�
diffðrÞ ¼ lim

Dt!0

Ds

Dt

1

2
s ir2

l �ðrÞ

� �

, ð62Þ

which is the general formulation of the diffusive correction term.

(a) Line segment bundle during expansion of a
loop with continuous orientation 

(b) Line segment bundle during expansion of a 

loop with discretized orientation

(c) Density redistribution to ‘stretch’ the seg-
ments to the correct length (d) Diffusive density redistribution

Figure 6. Diagrams illustrating schematically the density evolution of a bundle of expanding
dislocation loops. Graph (a) represents loops with continuous segment orientation. The other
graphs refer to loops with discretized orientation: graph (b) shows the evolution before
correction, (c) after restoring line continuity by density redistribution, and (d) with diffusive
density redistribution.
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As fragmentation is related to orientation space discretization in the presence of

curvature, it is useful to express the correction in terms of the respective parameters.

We use the identity

Ds

s i
¼ �

Dk

ki
¼ �Dt

@tk

ki
for Dt! 0 ð63Þ

and observe that the segment length si is related to the curvature and orientation

space discretization parameters by si¼D’/ki. This allows us to rewrite (62) as

@t�
diff ¼ �� 2 D’

k

� � 2
@tk

k
r2
l �: ð64Þ

In this expression, we have introduced � as a shape factor to account for the fact that,

while our argument is based on considering the lifted line as a sequence of segments of

a parallel line bundle, a numerical discretization of the line in terms of Gaussian

functions is more akin to a sequence of rounded ‘blobs’. In practice, we determine

this factor from numerical experiments to achieve an optimum balance between

the dual requirements that (a) fragmentation should be efficiently suppressed and (b)

the density profile of the line bundle should be preserved, i.e. no additional dispersion

in the glide direction should be introduced. For the chosen discretization of 60 nodes

in angular direction an optimal value for � can be identified as

�opt � 0:3: ð65Þ

For larger values �4�opt the diffusive effect introduces a significant reduction in

peak density and smearing out of the line profile, whereas for �5�opt the violation

of div aII¼ 0 is still appreciable. In Figure 7b, one can observe the mending effect of

the correction term.

In Figure 8, the temporal evolution of the sum of the mean absolute value of

div a
II is shown for different correction methods. Relaxation of the system along the

dislocation line proves the most effective method, however, carrying out the

relaxation to achieve the shown accuracy requires between 10 and 30 relaxation steps

after each time step, which causes an increase of the overall computation time by a

factor of more than 10. Evaluating the diffusive correction, on the other hand, can be

done ‘on the fly’ and does not cause a notable increase in computation time. For a

geometry factor of �¼ 0.3, we observe an efficient suppression of loop

fragmentation.

We finally note that the same considerations as above also hold for the shrinkage

of a loop. In this case, the diffusion coefficient becomes negative which allows the

loop to localize.

5. Application to micro-bending

To investigate the performance of our numerical scheme in a physically rele-

vant situation, we consider the problem of micro-bending of a free-standing thin

film. This problem has several interesting features: (i) one is dealing with an

intrinsically heterogeneous deformation state where the ‘composition’ of the

dislocation arrangement changes over time due to the growing strain gradients;
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(ii) these strain gradients are associated with pronounced size effects that have been

studied extensively using various dislocation-based models (see e.g. [9,10,23,26]);

(iii) the presence of an elastic core at the center of the specimen leads to the

spontaneous emergence of large curvatures in the dislocation system, and hence

Number of steps

Relax

Relax

II

II

Figure 8. Temporal evolution of the sum of the absolute values of div a
II for different

diffusive correction terms. Ideally, the sum would be zero for all steps. Due to the numerical
approximation, however, it is non-zero right from the beginning and always increases.
A larger amount of diffusion decreases the sum of kdiv a

IIk by comparison. The optimum
amount of diffusion obtained for �opt is a trade-off between minimizing kdiv a

IIk and
maintaining the correct peak density value. Relaxation of � yields the best result but at a very
high computational cost.

(a) (b)

Figure 7. Expansion of a circular loop with 60 nodes in ’-direction: projection of the density
�(r,’) into the spatial plane. The initial configuration was the same as in Figure 3a.
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provides an interesting testing case for the numerical accuracy of our computations

in a situation where all terms in the evolution equations (38) and (39) yield

appreciable contributions to the evolution of the dislocation system.

5.1. Model geometry and stress state

We consider bending of a free standing thin film of thickness h. The normal vector of

the free surfaces is denoted by ns, and we assume without loss of generality that ns is

perpendicular to the y axis of a Cartesian coordinate system. The dimensions of the

film in the directions perpendicular to ns are assumed large so that the system can be

considered homogeneous in these directions. The film is deformed by bending

around an axis parallel to the y direction. Plastic deformation by dislocation glide

may occur on two slip systems that are symmetrically inclined with respect to ns as

shown in Figure 9. The Burgers vector of each slip system is perpendicular to the y

axis, defining a plane-strain geometry. Since both slip systems are equivalent, it is

sufficient to analyze the evolution of the dislocation system for only one of them.

Furthermore, we may restrict ourselves to the evolution of strain and dislocation

density on a single slip plane since the system is homogeneous in the directions

parallel to the film. We define a Cartesian coordinate system such that the slip plane

coincides with the plane z¼ 0 as shown in Figure 10 and the origin is located on the

neutral fiber in the center of the film. The Burgers vector of the considered slip

system points in the positive x direction.

The shear stress in the considered slip system can be formally envisaged as the

sum of a reference shear stress �0 which describes the stress state in a film that is bent

to the same radius of curvature R in a purely elastic manner, and a shear stress �1
related to the plastic strain �, which is the sum of the plastic strains from both slip

systems. The stress �0 is given by

�0ðxÞ ¼
sinð2�Þh

Rð1� �Þ
G
x

l
, ð66Þ

where G is the shear modulus of the material, � is Poisson’s number, and l is the film

width projected on the x direction (Figure 10). For the geometry under considera-

tion, plastic deformation of a fiber leads to a stress reduction that is proportional to

the axial strain. Assuming isotropic material properties and making the standard

assumption that straight specimen cross-sections (cross-sections parallel to the

bending axis) remain straight during bending, we find that

�1ðxÞ ¼ �
sin2ð2�Þ

1� �
G�ðxÞ, ð67Þ

where we have accounted for the plastic strain contributions from both slip systems.

The bending momentM (moment per unit length in the y direction) corresponding to

a given bending radius R and plastic deformation state is evaluated from the stresses

�0 and �1 as

M

h 2
¼

4

sinð2�Þ

Z 1=2

0

ð�0ðuÞ þ �1ðuÞÞu du, ð68Þ
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where u¼x/l and �0,1(u)9 �0,1(x¼ ul). The scaled bending moment M/h2 in the

following serves as a measure of the characteristic stress in our bending simulations.

5.2. Constitutive relations

We use a linear-viscous model of overdamped dislocation motion by assuming that

the dislocation velocity depends linearly on the difference between the local shear

stress � and a local yield stress �y:

v ¼

b
B
ð� � �yÞ if �4 þ �y,

b
B
ð� þ �yÞ if �5 � �y,

0 otherwise:

8
><

>:
ð69Þ

Physically, the yield stress on a given slip system is governed by the intersection of

moving dislocations with ‘forest’ dislocations of other systems, leading to junction

formation. In the present case, both slip systems are equivalent, hence we can relate

the yield stress to the dislocation density on the slip system itself. We assume a

Taylor relationship,

�yðxÞ ¼ aGb
ffiffiffiffiffiffiffiffiffi
�ðxÞ

p
, ð70Þ

where a� 0.4 is a non-dimensional constant characterizing the strength of

dislocation-forest interactions.

In our constitutive model, we neglect effects of large-scale dislocation curvature

on the dislocation velocity (line tension as considered in [23,26]). We also neglect

Figure 10. Coordinate system used in our simulations for one of the slip systems: the system is
assumed to have infinite extension in y direction.

Figure 9. Micro-bending simulations: investigated slip geometry. �0 is the bending stress
(resolved shear stress in the slip systems) in the absence of plastic deformation.
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back stresses resulting from the ‘piling up’ of dislocations of the same sign [26,27],

which are also implemented in DDD simulations of micro-bending [24,25].

Consistent with our assumption that dislocation motion is controlled by forest

interactions, we do not impose specific boundary conditions to account for image

effects at the free surfaces. Instead, we allow dislocations of all orientations to enter

or leave freely, simply extrapolating the dynamics inside the film across the boundary

(similar to the ‘natural’ outflow boundary conditions in [24], where – contrary to our

boundary conditions – only outflow and no inflow of dislocations from the surface

was allowed). In physical terms, our boundary conditions imply that we assume that

surface sources have no activation stress other than the yield stress that controls

near-surface dislocation motion inside the sample.

5.3. Results

As initial condition for our simulated bending tests, we assume an isotropic

dislocation pattern with zero mean curvature and space-independent total disloca-

tion density �¼ 1013m�2, i.e. initially dislocations of all orientations are present with

equal density �(x, ’)¼ (1/2�)� 1013m�2. This initial condition describes a homoge-

neous and statistically isotropic arrangement of straight dislocation lines threading

the film at random points. We carry out quasistatic simulated bending tests by

increasing the load �0(x) in small steps. In physical terms, this corresponds to slowly

decreasing an imposed curvature radius on the thin film. We start from the critical

stress level where the shear stress at the surface reaches the yield stress corresponding

to the initial dislocation density. After each stress increment, we solve the equations

of motion while simultaneously evaluating the increase of the plastic strain and the

concomitant decrease of local stresses and increase in flow stress. Due to these

changes in the internal stress state the strain rate gradually decreases towards zero.

We trace this relaxation until the maximum strain rate has everywhere dropped

below a prescribed low level and then record the bending moment M and strain

profile �(x) as well as the dislocation and curvature patterns �(x, ’) and k(x, ’)

before applying the next stress increment.

The following examples were computed using finite differences with an

equidistant mesh. The resolution was about 700 spatial nodes and 100 angular

nodes; a fifth-order Runge–Kutta method with adaptive step size control turned out

to be an effective time integration scheme: the computational cost on a 2.4 GHz quad

core work station for each of the following simulations is about 20 minutes.

Typical density and curvature patterns are shown in Figure 11. These patterns are

characterized by the presence of an elastic core region where the stress �0(x) is less

than the yield stress corresponding to the initial dislocation density. No deformation

activity takes place within this region and, hence, the dislocation density and

curvature remain at their initial values. Curvature spatially localizes near the

boundaries of the elastic core region which are moving inwards with increasing

stress. In terms of the orientation coordinate, curvature is strongest for near-screw

orientations while edge dislocations are only weakly bent. Density accumulates in the

’¼ 3�/2 direction, which is the orientation of edge dislocations required to

accommodate the bending strain gradient. At the same time, the density of
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dislocations of other orientations decreases. The decrease is most pronounced for the

’¼�/2 orientation, i.e. for edge dislocations of the opposite sign.

As the strain increases, we observe that the total dislocation density in the plastic

regions increases strongly, as shown in Figure 12. This increase goes along with an

increase of the �11 component of the Kröner–Nye tensor, i.e. accumulation of

‘geometrically necessary’ dislocations required to accommodate the increasing plastic

strain gradients around the narrowing central elastic core. This is illustrated in

Figure 13.

The increase of total dislocation density that comes with the accumulation of

geometrically necessary dislocations leads, according to the Taylor relation, to an

increase in flow stress. As strain gradients are bigger in smaller specimens and

therefore the accumulation of geometrically necessary dislocations is more

pronounced, this leads to a size dependent hardening. This is illustrated in

Figure 14 which shows the scaled bending moment M/h2 as a function of the

average plastic strain h�i ¼ ð1=hÞ
Rþh=2
�h=2 �ðxÞ

�
�

�
� dx. While the initial flow stress is size

independent, the hardening rate and the flow stress at finite strain increase with

decreasing film thickness.

5.4. Discussion

An often-repeated argument for analyzing this type of size-dependent behavior

(see e.g. [9]) runs as follows: the dislocation density in a material is the sum of a

geometrically necessary density �G (up to a geometrical factor � equal to the strain

gradient divided by the Burgers vector modulus) and a so-called ‘statistically stored’

density �S. (The latter is in fact nothing but the total dislocation density minus the

geometrically necessary one, but the argument treats it like an independent physical

variable.) From Taylor’s relation for the flow stress one obtains

�y ¼ aGb
ffiffiffi
�

p
¼ aGb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�S þ �G

p
¼ aGb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�S þ
�

b
jr�

r

j: ð71Þ

Figure 11. Dislocation density and curvature patterns in (x, ’) configuration space for a film
thickness of h¼ 3mm and bending moment (per unit length in y) M¼ 2 � 10�15GPam2.
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One then makes the crucial assumption that the strain dependence of the ‘statistically

stored’ density �S(�) does not depend on the presence or absence of strain gradients.

Estimating the characteristic strain gradient as h�i/L where h�i is a characteristic

strain and L a characteristic dimension of the specimen then leads to a scaling

relation for the characteristic flow stress �:

½��,L�
2 ¼ ½��,1�

2 þ a 2G 2�b
�
� �

L
, ð72Þ

Figure 12. The top diagram shows the total dislocation density �ðxÞ ¼
R 2�
0

�ðx, ’Þd’. The left
and right diagrams show the densities of edge and screw dislocation for h¼ 3 mm:
�edge¼ �(’¼ 0.5�)þ �(’¼ 1.5�) and �screw¼ �(’¼ 0)þ �(’¼�).

Figure 13. Accumulated plastic strain and (11) component of the Kröner–Nye tensor � for
h¼ 3mm and different bending moments.
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where �h�i,1 ¼ aGb
ffiffiffiffiffiffiffiffiffiffiffi
�Sð�Þ

p
. To test this scaling relation we have to translate the

notations to our problem. The characteristic dimension L corresponds to the film

thickness h, and the macroscopic flow stress corresponds to the scaled bending

moment M/h2. As strain measure we use the average plastic strain h�i as defined
above. The infinite-system limit is obtained by solving the bending problem for

an ideally plastic material with flow stress corresponding to the initial

dislocation density. The corresponding deformation curve is denoted as

[Mh�i/h
2]19 limh!1[Mh�i,h/h

2]. The total dislocation density h�i in the specimen

is obtained by averaging �(x, ’) over the specimen cross-section and integrating over

all orientations ’, and the ‘geometrically necessary’ density h�Gi is obtained as the

minimum density of dislocations on each of the two slip system required to

accommodate the plastic strain gradient: we evaluate the component �11 of the

dislocation density tensor, average this over the specimen cross-section, divide by b

and multiply with the geometrical factor 1/(2 sin �).

If the above argument were to apply to our simulations, a plot of

½Mh�i,h=h
2� 2 � ½Mh�i=h

2� 21 versus the scaled plastic strain h�ib/h should yield a

straight line passing through the origin. The same should be true for a plot of the

total dislocation density h�i (reduced by the infinite-system value) versus the scaled

plastic strain. Our simulations, however, indicate a different behavior. Even though

the ‘geometrically necessary’ dislocation density increases approximately linearly

with scaled plastic strain, the same is not true for the total dislocation density: the

increase in total density initially lags behind the increase in the ‘geometrically

Figure 14. Bending curves for various film thicknesses; the curve for infinite thickness has
been calculated by assuming ideal plasticity and using the standard assumption of straight
specimen cross-sections.
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Figure 15. Scaling plot of the total and ‘geometrically necessary’ dislocation density versus
reduced strain h�ib/h. The upper line group is the plot for h�i, the lower line group is the plot
for h�Gi.

Figure 16. Scaling plot of the bending curves: ½Mh�i,h=h
2�2 � ½Mh�i=h

2�21 versus reduced strain
h�ib/h.
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necessary’ density and only catches up at large strains (Figure 15). As a consequence,

the scaling plot of the reduced bending moment versus the scaled plastic strain

(Figure 16) fails to produce a straight line.

What are the reasons for the discrepancy between the simulation results and the

naive scaling argument? Our investigation of dislocation density evolution indicates

that the linear increase of the ‘geometrically necessary’ density with reduced strain is

not matched by a concomitant increase of the total density, and hence of the

flow stress. The reason is that we allow dislocations to change their orientation,

besides freely entering or leaving through the specimen surface. As a consequence,

part of the increase of the ‘geometrically necessary’ density is not produced by

additional dislocations entering through the surfaces, but rather by changes in

orientation of existing dislocations and by the loss of dislocations of the ‘wrong’ sign.

As a consequence, the total dislocation density increases, at least for small strains/

large system sizes, much less than expected according to the simple scaling argument.

This indicates that the assumption of a separate ‘statistically stored’ density that

evolves in a size-independent manner is not warranted.

6. Conclusion and outlook

We demonstrated that ECT as a generalization of the classical Kröner theory can

capture several fundamental phenomena of the evolution of systems of curved

dislocations which cannot be recovered from other dislocation based continuum

theories. In particular, the simple benchmark problem of an ensemble of expanding

loops showed that the averaging process underlying ECT conserves important

kinematic properties of dislocation loops. Studying the expansion of a single quasi-

discrete loop served to elucidate certain numerical problems arising from the

discretization of orientation space and to find appropriate remedies. We then

demonstrated that the evolution of dislocation densities in orientation space may be

a key factor in the description of inhomogeneous deformation processes, as changes

in dislocation orientation may be an important mechanism for providing the

‘geometrically necessary’ dislocations needed to accommodate strain gradients.

Accordingly, simulations of micro-bending using a simple Taylor-based flow rule

yielded results that differ substantially from the predictions of gradient plasticity

theories that assume strain gradients to be accommodated exclusively by the

introduction of additional excess dislocations.

The present theory offers a versatile tool for treating the evolution of dislocation

systems without having to resolve the discrete dynamics of all dislocation lines, or

having to make arbitrary assumptions regarding the ‘composition’ of the dislocation

arrangement. Rather, the distribution of dislocations over the various orientations

follows naturally from the theory once the basic constitutive relations have been

specified which relate the dislocation velocity to the dislocation pattern. In our

simulations of micro-bending, we used a most simple constitutive law, assuming local

validity of the Taylor relationship but neglecting non-local contributions to the flow

stress that may be associated with line curvature and/or with the piling up of

dislocations of the same sign [26]. Such contributions can be easily included and their
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influence will be investigated in future work, which will also provide an extensive

comparison with the results of discrete simulations.
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Notes

1. We speak of a kinematically closed equation as we assume the dislocation velocity v at
this point to be a given quantity. In general, v is a function of the local stress, which in
turn depends on the dislocation arrangement. Hence, a mathematically closed theory
requires additional relationships between the dislocation state, as expressed by �, and the
dislocation velocity v. If v is a function of stress and line direction only, these relationships
may be derived from Kröner’s theory of eigenstresses [1].

2. It is worth noting that the definition of the second order dislocation density tensor does
not necessarily require a metric or volume element. However, an invariant definition
requires the use of advanced mathematical concepts such as e.g. differential forms. We
refrain from introducing these concepts in the current paper and refer the interested
reader to [16] and especially [18] for a more thorough treatment.

3. In our case, we pragmatically consider a numerical scheme to be well-behaving within the
‘working regime’ if a positive half-wave can be propagated for more than 10 000 steps
with a velocity v¼ 1.0, the mesh width h¼ 1.0 and a time step Dt¼ 0.1, such that the peak
of the wave can clearly be identified and no oscillations occur.
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