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a b s t r a c t

This paper presents the development of a physical-based constitutive model for the

representation of viscous effects in rubber-like materials. The proposed model origi-

nates from micromechanically motivated diffusion processes of the highly mobile

polymer chains described within the formalism of Brownian motion. Following the

basic assumption of accounting for the elastic and the viscous effects in rubber

viscoelasticity by their representation through a separate elastic ground network and

several viscous subnetworks, respectively, the kinetic theory of rubber elasticity is

followed and extended to represent also the viscous contribution in this work. It is

assumed that the stretch probability of certain chain segments within an individual

viscous subnetwork evolves based on the movement of the chain endpoints described

by the Smoluchowski equation extended in this work from non-interacting point

particles in a viscous surrounding to flexible polymer chains. An equivalent tensorial

representation for this evolution is chosen which allows for the closed form solution of

the macroscopic free energy and the macroscopic viscous overstress based on a

homogenization over the probability space of the introduced micro-objects. The

resulting model of the viscous subnetwork is subsequently combined with the non-

affine micro-sphere model and applied in homogeneous and non-homogeneous tests.

Finally, the model capacity is outlined based on a comparison with in the literature

available experimental data sets.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Polymers are characterized by remarkable properties making them qualified for applications in all areas of engineering.
They can appear in liquid or amorphous solid form, behave ductile in the case of glassy polymers or rubber-like for
elastomers. The latter, to be considered in this work, can in particular be characterized by the large deformations they can
sustain as well as the rate and history dependence of the resulting stresses in the material. This response is attributed to
their peculiar microstructure including a network of highly mobile and flexible polymer chains formed by their three-
dimensional cross-linking. From a constitutive modeling point of view the challenge lies in the development of physical-
based models to depict this behavior. In that regard one distinguishes static network theories for the modeling of elastic
effects and transient network theories for the modeling of time-dependent effects in rubber-like materials. A brief review of
those is provided in Sections 1.1 and 1.2, respectively, before in Section 1.3 the scope of the current work is discussed
which lies within the development of a new transient network theory for rubber-like materials. Its incorporation into finite
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viscoelastic constitutive models, as well as the resulting implementation and application to realistic experiments and its
qualitative comparison with existing experimental data sets are the main contributions of this work.

1.1. Static network theories

Early experimental results in Treloar (1944) indicate the characteristic S-shaped load versus stretch curve for the elastic
nature of rubber materials in uniaxial tensile tests in the form of an initially decreasing stiffness of the material and a rapid
increase thereafter. The reported deformation range, up to an eightfold extension of the material with an almost full
recovery of its initial shape upon unloading, outlines one of their main mechanical characteristics and reason for their
applicability in various areas of engineering and material science. Further experimental results are given in Rivlin and
Saunders (1951), James et al. (1975), and James and Green (1975), among others. The latter introduced a graphical
presentation of the results which allowed for a more convenient fit of the material data of constitutive models in terms of
their strain energy function. Inspired by the form of such a function for an isotropic, incompressible, hyperelastic material
various strain-invariant based phenomenological expressions are proposed to capture the characteristic response of rubber
(Mooney, 1940; Rivlin, 1948; Ogden, 1972; Yeoh, 1993). These empirical theories lack a direct physical justification of the
parameters appearing in the proposed expressions of the strain energy function.

On the contrary, the kinetic theory of elasticity (Meyer et al., 1932) accounts for the underlying physics by assuming that the
material consists of a large number of polymer chains which do form a static network by being permanently cross-linked at
junction points. A chain segment, considered as part of a polymer molecule approximated as an idealized chain of freely
rotating links, between two such junction points possesses a large number of possible conformations in terms of translational
and rotational degrees of freedom which are driven by the influence of the thermal motion of the chain endpoints. Since the
angles between adjacent bonds are considered to be random with equally distributed probability, the bond orientations do not
correlate resulting in a Gaussian distribution of the end-to-end vector of an unrestrained chain segment. This probability can
then be linked through the Boltzmann relation to the entropy and the free energy of a single chain (Kuhn, 1934, 1936; Guth and
Mark, 1934). This, as Gaussian statistics denoted background for the single entropic chain segments, is used for the derivation of
the Gaussian network models (Wall, 1943; Flory and Rehner Jr., 1943; James and Guth, 1943; Troloar, 1943a,b; Flory, 1944)
consisting of a highly cross-linked network of such Gaussian chains providing a link of the micromechanical polymer model to
macroscopic scales. The agreement of those models with the experimental results are acceptable up to stretch regions where
the individual chain segments are far from being fully extended.

Such limitation is overcome in the non-Gaussian statistics of Kuhn and Grün (1942) and later by Flory (1953) based on their
account of the finiteness of the chain extensibility where the modified probability density function of a chain with a certain
length and its resulting entropy is expressed in closed form in terms of the inverse Langevin function. An account for such a
finite extensibility of the individual chain segments in network models results in so called non-Gaussian network models.
Examples within that frameworks are the three-chain model considered in James and Guth (1943) and Wang and Guth (1952),
the four-chain model by Treloar (1946) as an extension of the model in Flory and Rehner Jr. (1943), or the more recently
developed eight-chain model by Arruda and Boyce (1993a) which successfully is able to represent the response of these
materials in uniaxial extension and compression, biaxial extension, plane strain compression, and pure shear problems. A full

network theory is proposed in Treloar (1954) and Treloar and Riding (1979) for uniaxial extension and biaxial tensile
deformation, respectively, and extended in Wu and van der Giessen (1993) to fully three-dimensional deformation processes. It
is noted that, whereas the three-chain model and the full network theory result in affine network formulations, meaning that
they preserve the affinity of the network deformation with regard to the macroscopically applied deformation, the remaining
non-affine network models do come along without such restriction. Chains oriented in the direction of loading display a higher
resistance to the stretch when approaching their limiting value compared to other chains in the network. Hence, the internal
structure of the polymer becomes heterogeneous which leads to a deviation of chain stretches when compared to those
resulting from the macrostrain. Only the non-affine models allow for such adjustment of the polymer microstructure.

Even though the underlying mechanisms of the individual chain segments in these theories account for their finite
extensibility, the possible chain conformations in between two junction points is not influenced by the surrounding
polymer chain segments. This is on the contrary done within constrained junction theories (Ronca and Allegra, 1975; Flory
et al., 1976; Flory, 1977; Erman and Flory, 1978; Flory and Erman, 1982) and within constrained segment theories (Deam
and Edwards, 1976; Heinrich and Straube, 1983, 1984; Edwards and Vilgis, 1988; Heinrich and Kaliske, 1997; Kaliske and
Heinrich, 1999). In Miehe et al. (2004) a micromechanically motivated network model, including a micro-tube constraint
based on Edwards (1967) to account for the surrounding polymer chains, together with a non-affine micro-to-macro
transition based on a homogenization procedure defined on a micro-sphere of space orientations is developed. The
resulting framework, called the non-affine micro-sphere model, yields an excellent performance in homogeneous and non-
homogeneous tests. Further references on the elastic behavior of rubber-like materials can be found in Treloar (1975) and
the review articles by Boyce and Arruda (2000) or Marckmann and Verron (2006).

1.2. Transient network theories

Besides the elastic ground response of rubber-like materials, captured by the above outlined static network theories,
their behavior is characterized by a finite viscoelastic overstress which governs rate-dependent effects such as relaxation
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and creep phenomena as well as frequency dependent hysteresis curves in cyclic loading processes. Experimental
observations of such effects are reported in Cotten and Boonstra (1965), Ferry (1980), Sullivan (1986), Lion (1996), Miehe
and Keck (2000), or Miehe and Göktepe (2005), among others.

When it comes to the numerical modeling of such phenomena, one again may distinguish purely phenomenological
models with a strong focus on the numerical implementation developed within the mechanics and engineering
community and approaches originating from physical chemistry and material science where the focus lies on molecular
models of these phenomena and their experimental justification by microscopic studies. Within the phenomenological
approaches, one can find models based on stress-type variables in the form of convolution integrals in the works of
Holzapfel and Simo (1996), Lion (1996), or Kaliske and Rothert (1997). Alternatively, the multiplicative split of the
deformation gradient, originally suggested by Lee (1969) in the context of elastoplasticity and by Sidoroff (1974) in non-
linear viscoelasticity, into elastic and inelastic parts is used in Lubliner (1985), Simo (1987), Boyce et al. (1988), Reese and
Govindjee (1998), Govindjee and Reese (1997), or Bergström and Boyce (1998). The description of the time-dependent
viscous effects based on the evolution of viscous metric tensors is chosen in Miehe and Keck (2000). An extension of the
above mentioned micro-sphere model of rubber elasticity to account for viscous effects is achieved in Miehe and Göktepe
(2005) and Göktepe and Miehe (2008).

An alternative to these continuum approaches are the molecular-based theories. These have been developed recently to
describe the viscous behavior of molten polymers and amorphous rubber-like materials. The bead-spring model (Bird et al.,
1977), the reptation-type tube models (De Gennes, 1971; Doi and Edwards, 1986), and the transient network models (Green
and Tobolsky, 1946; Tanaka and Edwards, 1992) are mentioned as examples in this area. Recently, an increasing activity in
combining these two approaches can be observed, resulting in so called micromechanically motivated approaches (Boyce
et al., 1989; Arruda and Boyce, 1993b; Bergström and Boyce, 1998).

1.3. Scope of this work

In this context, the current work is concerned with the development of a physically interpretable and fully
micromechanically motivated transient network model for the description of the polymer chain movement to describe
the viscous effects in rubber-like materials. For polymers, consisting of long-chain molecules as proposed in Staudinger
(1920), such movement can be understood by entanglement mechanisms in the physical sense or by secondary bonds,
such as hydrogen bonds, which unlike the primary chemical bonds between polymer chains of the elastic network in
rubbers are weak and highly dynamical. One of the early entanglement models goes back to the work in Green and
Tobolsky (1946) where it is assumed that such entanglements are steadily created and destroyed. In particular, when a
new chain joins the network based on an appearing entanglement, it is assumed that this chain reforms in a stress-free
state resulting in a steady decrease of the network stresses in time being characteristic for stress relaxation phenomena.
With regard to the equal rate, at which entanglement junctions are assumed to be created and broken, a linear evolution is
derived, limiting the applicability to problems with small perturbations from the thermodynamic equilibrium. An
extension of the transient network model in Green and Tobolsky (1946) is achieved in Yamamoto (1956, 1957) by
accounting for the dependency of the probability of the chain breakage rate on the tension acting in the network and by
Lodge (1956) allowing for an anisotropy of the deforming network and the existence of many stress relaxation periods as
well as its extension in Bernstein et al. (1963). In Reese and Wriggers (1999) the original model by Green and Tobolsky
(1946) is generalized to allow for states away from the thermodynamic equilibrium by the introduction of a stress-free
intermediate configuration.

In line with these approaches, the aim of this work is to develop a new micromechanically motivated model for the
description of the transient network to describe viscous effects in polymers. The key aspect in the proposed model is the
stochastic motion within the viscoelastic part of the network including the re-orientation and stretch relaxation of chain
segments. This process is seen as a Brownian motion performed by the chain segment end points within a viscous
surrounding idealizing the neighboring chains in the network. Motivated by the description of the movement of non-
interacting point particles in a viscous fluid described by the Smoluchowski equation obtained as a generalization of the
diffusion equation in Doi and Edwards (1986), this is extended to describe the motion of the chain segment end points
governing a change of the distribution of stretch within the subnetwork due to the macrodeformation and internal
relaxation of the microstructure. It is further shown that an equivalent tensorial formulation of this micromechanically
based model can be derived resulting in evolution equations of the internal variables and closed form expressions of the
free energy as in Green and Tobolsky (1946). The thermodynamical consistency comes intrinsically from the micro-
mechanical origin which is outlined in detail. This description of the transient network is subsequently combined with the
non-affine micro-sphere model developed in Miehe et al. (2004) to represent the elastic ground network and applied to
homogeneous and non-homogeneous experimental data sets.

The paper is organized as follows. In Section 2 the basic network mechanisms of finite rubber viscoelasticity of a nearly
incompressible solid is summarized which provides the description of the characteristic finite deformation and the basic
thermodynamics of the continuum. It is assumed that the response of the rubber-like material can be decomposed into an
elastic ground network and a highly mobile viscous subnetwork. For the latter, a micromechanically motivated model is
proposed in Section 3. Starting with an entropic spring representation of a single polymer chain based on its equilibrium
kinetics, a model for the mobile subnetwork evolution based on the concept of Brownian motion is developed and applied
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Fig. 1. Network representation of the microscopic response of rubber-like materials. The schematic response of the material decomposed into a strongly

cross-linked ground network (representing the elastic response) and a mobile subnetwork (formed by temporary entanglement mechanisms

representing the viscous response) is illustrated under an applied arbitrary macrodeformation.
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to the network chains whose end points are treated as point particles moving in a viscous surrounding. The final outcome
is the flow equation with respect to the stretch probability field that describes the microdeformation of a single
subnetwork. In Section 4 an equivalent tensorial representation of the stretch probability evolution is developed
which allows for the closed form computation of the macroscopic free energy and the macroscopic viscous overstress.
Finally, Section 5 outlines the performance of the model when combined with the non-affine micro-sphere model
for the representation of the elastic ground network on a set of homogeneous and non-homogeneous representative
problems. The model capacity is evaluated based on comparisons of all tests with available experimental data sets in the
literature.

2. Basic network mechanisms of finite rubber viscoelasticity

This section briefly summarizes the resulting constitutive equations of finite rubber viscoelasticity under the basic
assumption of the polymer microstructure being assembled by several idealized polymer networks. Motivated by the
discussion in Section 1, the response of the rubber-like material is considered to be decomposed into a ground network

formed by strongly cross-linked macromolecules and a subnetwork consisting of highly mobile and based on temporary
entanglement mechanisms linked macromolecules. Whereas the ground network is associated with the elastic response of
the material, the subnetwork is responsible for the description of the viscous material properties in the form of the
appearance of a viscous overstress. An illustration of the resulting viscoelastic behavior is given in Fig. 1 displaying a
schematic representation of the individual networks under an applied macrodeformation. Based on such deformation, the
ground network stretches and drags the mobile subnetwork along with it. After a sufficient amount of time at a constant
deformation, the subnetwork relaxes towards a state at which it produces no viscous overstress. Whereas the elastic
ground network can be represented by models such as the eight-chain model developed in Arruda and Boyce (1993a) or
the non-affine network model developed in Miehe et al. (2004), among many others, the emphasis of this work is to
develop a diffusion-based micromechanically motivated model for the representation of the viscous mobile subnetwork.
In fact, the numerical simulations presented in Section 5 make use of the model developed in Miehe et al. (2004) for the
representation of the elastic ground network but it should be kept in mind that the developed model of the viscous
subnetwork does not rely on a particular model choice for the description of the elastic properties.

Following the geometric setting of finite inelasticity outlined in Miehe (1998), the macroscopic finite rubber
viscoelastic response is based on a volumetric-isochoric decomposition, where the isochoric part itself is decomposed
into an elastic equilibrium and a viscous overstress response, as it is briefly summarized in this section. To do so, consider a
body to be a collection of material points which at time t 2 Rþ occupies a spatial configuration S � Rndim in terms of the
space dimension 1rndimr3. An individual material point of the body at time t is located at position x 2 S. The change of
properties of such material point in the body is described relative to a fixed reference configuration B � Rndim which for
instance can represent the configuration occupied by the body at the instant time t0 in which the material point is located
at position X 2 B. To avoid any explicit reference to the body itself, the non-linear deformation map uðXÞ : X/x¼uðX; tÞ
is introduced which maps positions X 2 B onto positions x 2 S. Key kinematic quantities are the local deformation gradient
F ¼rXuðX; tÞ representing the linear map between tangent vectors in the reference and the spatial configuration,
respectively, where the Jacobian J¼ detF has to satisfy J40, as well as the covariant Cartesian metric tensors G¼ dAB and
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g ¼ dab of those configurations written in terms of the Kronecker symbol d. The boundary value problem of the
macroscopic finite viscoelastic problem at hand for the quasi-static case is then governed by the balance of linear
momentum

divX ½sF�T
�þB ¼ 0 ð1Þ

written in terms of the divergence operator divX with respect to the reference position X together with prescribed

displacement boundary conditions u¼uðX; tÞ on @Bj and prescribed traction ½sF�T
�N ¼ T ðX; tÞ on @Bt with outward

normal N. The usual conditions @Bj \ @Bt ¼ | and @Bj [ @Bt ¼ @B have to hold in each component of the deformation

mapping to ensure a well-posed problem. In (1), the prescribed body force field B with respect to the unit volume of the
reference configuration as well as the Kirchhoff stress tensor s are introduced. The latter is assumed to be a function of the
local deformation gradient F and some internal variables I responsible for the characterization of the viscous structural
changes. The Kirchhoff stress s and its associated moduli are given as

s¼ 2@gwðg,I ; FÞ and C¼ 4@2
ggwðg,I ; FÞ ð2Þ

in terms of the macroscopic free energy per unit volume of the reference configuration (Marsden and Hughes, 1983;
Miehe, 1998) stored in a deformed polymer network with the requirement of being material frame invariant in the sense

that wðg,I ;QFÞ ¼wðg,I ; FÞ for all rotations Q 2 SOð3Þ.
The rubber-like material considered in this work is assumed to be nearly incompressible which motivates a decoupled

volumetric-isochoric formulation based on the decomposition of the macroscopic free energy as

w¼UðJÞþwðg,I ; F Þ ð3Þ

in terms of the volumetric and isochoric contributions, respectively. The numerical simulations presented in Section 5

make use of UðJÞ ¼ kðJ2�1�2lnJÞ=4 for the former contribution. The latter is given in terms of the unimodular part of the

deformation gradient defined as F ¼ J�1=3F which is assumed to drive the deviatoric part s ¼ 2@gwðg,I ; F Þ of the total

stresses decomposed into spherical and deviatoric contribution as

s¼ pg�1þs : P ð4Þ

with p¼ JU0ðJÞ and the fourth-order deviatoric projection tensor Pab
cd ¼ ½d

a
cd

b
dþd

a
dd

b
c �=2�dabdcd=3. This decomposition carries

along into the representation of the moduli C written in terms of the deviatoric part C ¼ 4@2
ggwðg,I ; F Þ as

C¼ ðpþkÞg�1 � g�1�2pIþPT : Cþ
2

3
ðs : gÞI

� �
: P �

2

3
ðPT : s � g�1þg�1 � s : PÞ ð5Þ

with k¼ J2U00ðJÞ and in terms of the fourth-order identity tensor Iabcd
¼ ½dacdbd

þdaddbc
�=2.

To account for the actual behavior of rubber viscoelasticity, the isochoric part of the above model is further decomposed
into elastic and viscous parts in accordance with the representation of the polymer network structure into an elastic
ground network and a viscous subnetwork illustrated in Fig. 1. In case of s viscous subnetworks which are introduced to
obtain a discrete spectrum of relaxation times related to different viscosities fZig

s
i ¼ 1, the isochoric part w in (3) of the free

energy can be additively split into

w ¼w
e
ðg; F Þþw

v
ðg,I ; F Þ where w

v
ðg,I ; F Þ ¼

Xs

i ¼ 1

w
v

i ðg,I i; F Þ ð6Þ

is given as a summation over each of the s viscous subnetworks. The corresponding rheological model for such an isochoric
response of the material is illustrated in Fig. 2. This further yields to the decomposition of the deviatoric part of the stresses
into an elastic equilibrium stress response and a viscous overstress response according to

s ¼ se
þsv with se

¼ 2@gw
e
ðg; F Þ and sv

¼ 2@gw
v
ðg,I ; F Þ: ð7Þ

Whereas the response of the elastic equilibrium stress is assumed to be isotropic, resulting in the condition

w
e
ðg; FQ Þ ¼w

e
ðg; FÞ8Q 2 SOð3Þ, a deformation induced anisotropy is provided by the dissipative viscous overstress which

is characterized by the evolution of the internal variables I in time. To obtain a formulation consistent with the second
axiom of thermodynamics the local dissipation has to satisfy the inequality

Dloc ¼�@Iw � _I ¼
Xs

i ¼ 1

Dloc,iZ0 where Dloc,i ¼�@I i
w � _I i: ð8Þ

After presenting a brief overview of the basic network mechanisms of rubber viscoelasticity and its incorporation into
standard finite rubber viscoelasticity, the remaining part of the work is concerned with the development of a diffusion-
based, from a microscopic point of view physically motivated, transient network model resulting in expressions for the
viscous part w

v
of the isochoric free energy as well as for the viscous overstress response sv. Whereas Section 3 will

develop the diffusion-based micromechanical polymer model, its incorporation into the macroscopic framework above is



1 1

2 2

s s

�1

�2

�s

Fig. 2. Macroscopic representation of finite rubber viscoelasticity. The Maxwellian type rheological model of the isochoric response of the material

consists of a single elastic branch representing the elastic ground network in Fig. 1 as well as s viscous branches each of them representing a single

mobile viscous subnetwork in Fig. 1.
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achieved in Section 4 and finally evaluated through representative numerical simulations in Section 5 based on
homogeneous and non-homogeneous tests.

3. Microscopic formulation of the diffusion-based transient network model

In this section a micromechanical model for the description of the polymer chain movement is developed. The model
makes use of the concept of diffusion to approximate the time evolution of the probability density function associated with
the end-to-end vector of the individual chain segments undergoing a Brownian movement. The application of statistical
methods for the description of micromechanical states of rubber-like polymers is justified by the enormous number of
conformations in time based on the rotation of chemical bonds such materials may undergo. In Section 3.1 the Gaussian
statistics of a single chain is briefly reviewed. To account for viscoelastic phenomena in polymers related to the dissipation
of mechanical work, the framework of non-equilibrium thermodynamics is introduced in Section 3.2 when describing a
diffusion-based process of the Brownian motion of non-interacting point particles. This framework is extended in Section
3.3 to describe the Brownian motion of polymer chains representing the core part of the developed micromechanical
polymer model in this section.

3.1. Gaussian statistics of a single polymer chain

Following the classical work in Kuhn (1934, 1936) or the more recent contribution of Treloar (1975) or Doi and Edwards
(1986), in this section a brief review of the statistics of a single polymer chain is provided in the form of the most simple
case of a freely jointed model. The model, which already captures many of the characteristic properties of a single polymer
chain, rests upon the assumption that such chain consists of N links, each of length b, whose orientations are assumed to be
random and independent of each other. The conformation of such freely jointed chain is determined either by ðNþ1Þ
position vectors frng

N
n ¼ 0 of the joints including the two end points or alternatively by a set of N independent bond vectors

fbng
N
n ¼ 1 with bn ¼ rn�rn�1 for n¼1,y,N. Viewing the chain as a statistical system, the probability of a particular chain

conformation fbng
N
n ¼ 1 can be computed by

pðfbng
N
n ¼ 1Þ ¼

YN
n ¼ 1

pðbnÞ with pðbnÞ ¼
1

4pb2
dðjbnj�bÞ ð9Þ

as the product of the isotropic distribution of the individual random bond vectors with fixed length b expressed in R3 by the

single-layer potential pðbnÞ given in terms of jbnj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bn � bn

p
and normalized according to the condition

R
R3 pðbnÞdbn ¼ 1. The

size of the polymer chain can then be characterized by the end-to-end vector r defined as r¼ rN�r0 ¼
PN

n ¼ 1 bn with the

corresponding mean value rh i ¼
PN

n ¼ 1 bn

� �
¼ 0 and mean-square value r2

� �
¼
PN

n,m ¼ 1 bn � bm

� �
¼Nb2, for sufficiently

large N. Here, �h i denotes the mean value of a random quantity ð�Þ that is computed as an integral over the probability
space as

�h i ¼

Z
ð�Þdfbng

N
n ¼ 1: ð10Þ
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The above mean values do not provide sufficient information to describe the statistical system of the freely jointed model.
What is required is the knowledge about the corresponding statistical distribution of the end-to-end vector r given as

pðrÞ ¼

Z
pðfbng

N
n ¼ 1Þd r�

XN

n ¼ 1

bn

 !
dfbng

N
n ¼ 1 ¼

3

2pr2
0

 !3=2

exp �
3

2

r2

r2
0

" #
ð11Þ

whose solution is given (see Doi and Edwards (1986) for a detailed derivation) in terms of r¼ rj j and r2
0 ¼ r2

� �
in the form of

a Gaussian distribution. It is emphasized that as a result of the central limit theorem in statistics, for Nb1 the obtained result
(11) of the freely jointed model holds even for a more general class of models with the only difference of the actual bond
length b being replaced by an effective counterpart (Doi and Edwards, 1986). On the other hand, the solution obtained in (11)

has the non-physical feature that the probability of finding end-to-end vectors with r4Nb, where Nb represents the length
of a fully extended chain, is non-zero. Nonetheless, it provides a good estimate for models in which highly stretched states of
the polymer chains do not play an important role, as it is the case for the diffusion-based micromechanical polymer model
developed in this section for the representation of the mobile viscous subnetworks introduced in Section 2.

The distribution pðrÞ in (11) can be understood as a measure of the number of conformations of a chain and can,
therefore, be directly linked to the entropy. Considering a thermodynamical system of a polymer chain with the
constrained position of the ends one can postulate the entropy S in the form of Boltzmann’s relation

SðrÞ ¼ kBlnpðrÞ ¼�
3

2
kB

r2

r2
0

þterms independent of r ð12Þ

where kB is the Boltzmann constant. When rotations about the bonds in the molecular polymer chain are considered to be
unrestricted, the internal energy will remain the same for all conformations (Treloar, 1975) so that the Helmholtz free
energy can be solely computed based on the entropy in (12) as

AðrÞ ¼�ySðrÞ ¼ 3

2
kBy

r2

r2
0

þterms independent of r ð13Þ

in terms of the known temperature y of the polymer. In analogy to existing bead-spring models (Bird et al., 1977), this
viewpoint motivates the interpretation of a polymer chain with fixed end points and different conformations in between
those by an entropic spring expressing the average response from the thermal motion of the chain segments. The
thermodynamic force acting on the fixed ends of such spring then becomes

Fr ¼
@A
@r
¼ 3kBy

r

r2
0

: ð14Þ

The simplified theory discussed in this section neglects possible temporary constraints like bonding or detachment of
polymer chain segments leading to time-dependent phenomena such as viscoelasticity. The incorporation of such effects is
achieved within the framework of non-equilibrium thermodynamics in the subsequent Section 3.2.
3.2. Brownian motion of non-interacting point particles

The incorporation of viscoelasticity as a time-dependent phenomena of polymers related to the dissipation of
mechanical work on the micromechanical level is achieved by the development of a model which treats the viscoelastic
relaxation of the microstructure as a diffusion-based process allowing for the incorporation of the formalism of Brownian
motion. Following the phenomenological approach in Doi and Edwards (1986), the Brownian motion can be interpreted as
a stochastic process that is governed by known macroscopic laws applied to microscopic objects. Such a treatment is
restricted to time- and length-scales larger than those characteristic of equilibrium thermal oscillations. The resulting
phenomenological evolution equation in the form of the Smoluchowski equation is derived from the generalization of the
diffusion equation and can be related to the thermodynamics of irreversible processes. To allow for a concise derivation of
the Smoluchowski equation, in the following the Brownian motion of non-interacting point particles is restricted to
translational degrees of freedom.

To do so, consider a system with a large number of point particles submerged in a viscous medium as it is illustrated on
the left of Fig. 3. The phenomena of diffusion can be observed in such a system when the distribution of particles in the
medium is not uniform resulting in a flux which is proportional to the spatial gradient of the concentration of particles.
The microscopic origin of the macroscopically observed flux is motivated in Doi and Edwards (1986) by the random
thermal motion of the particles in the sense that in case of a non-uniform concentration, the number of particles flowing
from regions of higher concentration to regions of lower concentration surpasses the number of particles moving in the
opposite direction.

To describe this process, consider the probability of finding a particle in a certain state governed by its position x at a
certain time t expressed by the probability function pðx,tÞ which can be viewed as the concentration of particles cðx,tÞ
scaled to the total number of particles n as cðx,tÞ ¼ npðx,tÞ. This distribution evolves in time based on the continuity



p(x, t)

−∇x p(x, t)

Fchvvch

v̄

Fig. 3. Brownian motion of non-interacting point particles. A non-uniform distribution of particles results in a flow proportional to the spatial gradient of

particles from regions of high concentration to regions of low concentration as shown on the left. The right figure shows the resulting average velocity vh i
of point particles submerged in a, with velocity v , moving viscous medium.
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equation

@tpðx,tÞ ¼�divxhðx,tÞ ð15Þ

where hðx,tÞ consists of the flux hchðx,tÞ induced by the thermal motion of the particles and an additional flux arising from
the motion of the surrounding viscous medium. The former is given as

hchðx,tÞ ¼�pðx,tÞ
1

ZrxUch where Uchðx,tÞ ¼ kBylnpðx,tÞþUðxÞ ð16Þ

is called the chemical potential resulting in a flux contribution coming from the thermal motion of the particles in
the presence of a non-uniform concentration �Drxpðx,tÞ in terms of the diffusion constant D¼ kBy=Z with Z40 as the
viscosity and the additional contribution �pðx,tÞ=ZrxUðxÞ induced by the presence of a stationary potential UðxÞ. The
chemical potential Uchðx,tÞ in (16) expresses the energy of a certain particle at state x and time t so that the resulting
evolution of the particle distribution based on (15) can be interpreted as the motion of particles from states with high
energy towards states with lower energy. This motion is driven by a chemical force Fch that in addition determines the
average velocity vch

� �
of the particles relative to the viscous medium. Both are given in terms of the chemical potential as

Fch ¼�rxUch and vch

� �
¼

1

Z
Fch ¼�

1

Z
rxUch ð17Þ

so that the flux in (16) is found as hchðx,tÞ ¼ pðx,tÞ vch

� �
. The second contribution to the flux hðx,tÞ in (15) comes from the

macroscopic motion of the viscous medium surrounding and influencing the flow of the particles. To account for such
movement one has to add the contribution of the macroscopic velocity vðx,tÞ to the average particle velocity vch

� �
arising

from the chemical potential resulting in a total average velocity vh i and a total flux hðx,tÞ given as

vh i ¼ vþ vch

� �
and hðx,tÞ ¼ pðx,tÞ vh i ð18Þ

respectively. Insertion of these expressions into (15) leads to the final form of the Smoluchowski equation describing the
Brownian motion of particles subjected to an external potential force field in a moving viscous medium as

@tpðx,tÞ ¼�divx½pðx,tÞv�þ
1

Z
divx½pðx,tÞrxðkBylnpðx,tÞþUðxÞÞ�: ð19Þ

Remark 1.
(a)
 The Smoluchowski equation (19) is dissipative which can be observed based on the introduction of

AðpÞ ¼ n

Z
pðx,tÞUch dx

�� �� ð20Þ

representing the dynamic free energy of the thermodynamic system of Brownian particles (Doi and Edwards, 1986) in
terms of the distribution pðx,tÞ summing up the chemical potential Uch over all the n particles in the system. For the
case of a non-moving viscous surrounding ðv ¼ 0Þ under isothermal conditions (y¼constant) together with using (16),
(19),

R
@tp dx
�� ��¼ 0 and integration by parts, where the contribution of the boundary integral is assumed to vanish, one

can show that the time change of A, given as

dA
dt
¼�n

Z Z
pðx,tÞ

hchðx,tÞ � hchðx,tÞ dx
�� ��r0 ð21Þ
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Fig. 4. Lagrangian description of the Brownian motion of flexible polymer chains. The polymer chain with end-to-end vector r is modeled as an entropic

spring and placed into a viscous moving surrounding representing the remaining polymer network where the viscosity is concentrated at the chain end

points. The resulting relative movement of these end points is described by the kinetic relation (26).
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is negative. The inequality emphasizes the fact that diffusion drives the relaxation of the system towards the
equilibrium state where hchðx,tÞ given in (16) is responsible for the resulting dissipative flow.
(b)
 The equilibrium state is attained in the absence of macroscopic flow of the surrounding medium for a vanishing flux
hch ¼ 0 so that rxUch ¼ 0 results in the equilibrium distribution

peqðxÞ ¼ exp �
UðxÞ

kBy

� ��Z
exp �

UðxÞ

kBy

� �
dx
�� �� ð22Þ

where the denominator results from the normalization condition
R

peq dx
�� ��¼ 1. In the equilibrium state (22) the

inequality in (21) becomes an equality with vanishing change of the free energy in time.
3.3. Brownian motion of flexible polymer chains

In this section the presented model of the previous section is extended to describe the Brownian motion of flexible
polymer chains. Analogous to the point particles in Section 3.2, the proposed model assumes that the polymer chains are
immersed into a viscous medium representing the surrounding polymer network. Contrary to the previous section where
the state of the individual particles was described by their position x, the state of the polymer chain is described in terms
of the in Section 3.1 introduced end-to-end vector r or analogously in terms of the newly introduced vector k¼ r=r0 as a
measure of the rotation and stretch of the chain. The state of the overall thermodynamic system consisting of a large
number of such chains in the vicinity of a material point can then be described by the distribution pðk,tÞ in R3.

Each polymer chain is now modeled as an entropic spring with the energy given based on (13) as

UðkÞ ¼ 3
2kByl

2
þterms independent of k ð23Þ

where l¼ jkj ¼ r=r0. It is further assumed that the viscosity is concentrated at the ends of the polymer chains, where we
refer as the � and the þ end the starting and the end point of the end-to-end vector r, respectively. This results in the
kinematic relation illustrated in Fig. 4 where on average the two end points are moving according to

v7
� �

¼ v 7
þ v7

ch

� �
ð24Þ

in terms of the velocity v 7 resulting from the motion of the surrounding viscous medium and the motion of the thermally
active polymer chains v7

ch

� �
given as

v 7
¼ 7

lr

2
¼ 7

r0lk

2
and v7

ch

� �
¼ 8

1

Z
rrUchðr,tÞ ¼ 8

1

Zr0
rkUchðk,tÞ ð25Þ

respectively. The first part v 7 of the end point velocities in (24) corresponds to the changes in the mobile network
following the macroscopic velocity gradient l¼ _F F�1 with F being the deformation gradient. The second part v7

ch

� �
¼ F 7

ch =Z
introduces the diffusion-based average motion of chain segments relative to the viscous medium under the action of the
chemical forces F 7

ch ¼ 8rrUch ¼ 8rkUch=r0 conjugate to the length r of the spring or its stretch l drawing their ends.
Summing up the velocities of the end points one derives the average transient change of the end-to-end vector
_rh i ¼ vþ

� �
� v�h i which can be expressed in terms of the evolution of the stretch as

_k
� �
¼ lk�Dlrk lnpðk,tÞþ

3

2
l2

� �
where Dl ¼

2kBy
Zr2

0

: ð26Þ

The result in (26) makes use of the chemical potential Uchðk,tÞ defined in stretch space analogous to (16) as

Uchðk,tÞ ¼ kBylnpðk,tÞþ3
2kByl

2: ð27Þ

The resulting diffusion process of the polymer chains can hence be interpreted as re-orientation and re-distribution of
polymer chain stretches which, in analogy to (15), can be described as

@tpðk,tÞ ¼�divk½pðk,tÞ _k
� �
� ¼ �divkðhrevþhdisÞ: ð28Þ



�3

�2 �1

�3

�2
�1

Fig. 5. Eulerian description of the Brownian motion of flexible polymer chains. A perturbation of the probability distribution pðk,tÞ due to an

instantaneous macroscopic deformation schematically shown on the left results in an inhomogeneity of the chemical potential field Uchðk,tÞ and a

resulting flow based on (29) leading to a change of probability according to the Smoluchowski equation in (28).
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The two equations (26) and (28) can be viewed as the Lagrangian and the Eulerian description of the microscopic
diffusional motion. Whereas the former follows a particular chain stretch and tracks the average velocity _k

� �
of its

endpoints, the resulting Smoluchowski equation in (28) is concerned with the change of the probability of a certain state k

in time.
One can further observe both, a reversible and dissipative part of the evolution equation for the probability distribution

in (28) in terms of the corresponding fluxes defined as

hrevðk,tÞ ¼ pðk,tÞlk and hdisðk,tÞ ¼ �Dlpðk,tÞrk½lnpðk,tÞþ3
2l

2
� ð29Þ

respectively. The reversible part arises due to the motion of the polymer chain in accordance with the surrounding
macromedium, whereas the dissipative part results from the diffusion and stretch relaxation. The dependence of the latter
contribution on the mean-square length r0 through Dl emphasizes further the influence of the chain length on the
diffusion process. The shorter the chain, the higher is its mobility.

Remark 2.
(a)
 The dynamic free energy of the thermodynamic system is again obtained as an integral of the chemical potential (27)
over all the possible states k in the stretch space represented by R3 as

A¼ n

Z
R3

pðk,tÞUch dk
�� ��¼ nkBy

Z
R3

pðk,tÞ½lnpðk,tÞþ3
2l

2
� dk
�� �� ð30Þ

where n represents now the number of polymer chains in the system. For the case of a non-moving viscous
surrounding ðl¼ 0Þ under isothermal conditions ðy¼ constantÞ it can be further shown that the free energy is again
decreasing in time as already outlined in Remark 1 for the point particles.
(b)
 The equilibrium state is characterized by a natural unperturbed state of the end-to-end vector probability

peqðkÞ ¼ exp �
3

2
l2

� ��Z
R3

exp �
3

2
l2

� �
dk
�� ��¼ 3

2p

	 
3=2

exp �
3

2
l2

� �
ð31Þ

representing a Gaussian bell-shaped distribution for which the flux hdis in (29) vanishes.
The resulting mechanism of viscoelasticity can now be understood by considering a macroscopic motion defined by the
macrodeformation represented in terms of the velocity gradient l which pulls the system out of equilibrium and deforms
the initial distribution (31) as depicted on the left of Fig. 5. This results in a change in the chemical potential Uch making it
inhomogeneous so that the chemical force Fch, driving the diffusion process, develops. When the macrodeformation
freezes, meaning that it remains constant for a sufficiently long time, this process will return the system to the
unperturbed state based on a diffusional flow depicted on the right of Fig. 5 in which mechanical work will be dissipated.

4. Macroscopic formulation of the diffusion-based transient network model

The goal of this section is to embed the diffusion-based micromechanical polymer model developed in the previous
Section 3 into the framework of finite rubber viscoelasticity by the construction of closed form expressions for the viscous
part of the isochoric free energy w

v
in (6) as well as the corresponding viscous overstresses sv in (7) for a single viscous

subnetwork illustrated in Fig. 2.
Above, the microscopic model of Section 3.2 is treated as a thermodynamic system of Brownian point particles which is

extended in Section 3.3 towards the description of the Brownian motion of flexible polymer chains. It is shown that the
temporary state of such a system is described by the probability function pðkÞ whose evolution in time is driven by (28) in
the form of the Smoluchowski equation. Solving this parabolic differential equation directly does not allow for solutions of
the free energy w

v
or the viscous overstress sv which can be expressed in closed form. It is for this reason that a particular



Fig. 6. Tensorial representation of the probability function evolution. The stretch spaces LX and Lx connected to a material point with position X and x in

the reference and the current configuration and its relation through the microdeformation map P is outlined in the top figure. The figure below

schematically shows the change in probability pðkÞ in Lx starting from the equilibrium distribution PðKÞ in LX due to some arbitrary microdeformation P.
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choice for the change of the probability function pðkÞ is assumed in Section 4.1 in the form of a tensorial representation of
its evolution resulting in the desired closed form solutions of these quantities. Section 4.2 then derives these closed form
solutions of the viscous part of the isochoric free energy as well as for the viscous overstress and gives a proof of the
satisfaction of the thermodynamic consistency of the proposed model. Finally, Section 4.3 summarizes the algorithmic
representation and implementation of the model.

4.1. Tensorial representation of the probability function evolution

In the following a tensorial representation of the evolution of the probability function is assumed, which allows for a
closed form representation of the macroscopic quantities within the finite rubber viscoelasticity model. In particular, this
section outlines how the Smoluchowski equation (28) can equivalently be described based on an ordinary differential
equation in one tensorial quantity.

To do so, use is made of the representation of changes of the solids macroscopic properties in the current configuration
S with respect to a reference configuration B, as it is outlined briefly in Section 2, where the deformation gradient F acts as
the linear map between tangent vectors of those spaces. The property of interest in this setting is now given by the
probability function pðkÞ : Lx�!R where Lx ¼R3 is the stretch space connected locally to a material point with position x
in the current configuration S. Its evolution is described with respect to an introduced referential probability function P

living in a stretch space LX ¼R3 connected to a material point with position X in the reference configuration B. This initial
probability function is assumed to be given as

PðKÞ ¼
3

2p

	 
3=2

exp �
3

2
L2

� �
ð32Þ

in the form of a Gaussian distribution in terms of the norm L of the referential stretch vector K. The two stretch spaces are
linked by a microdeformation map

P :
LX-Lx

K/k¼ PK

�
ð33Þ

as it is illustrated in Fig. 6. The evolution of pðkÞ with respect to PðKÞ is then assumed to depend on this microdeformation
map in (33) based on the relation

pðkÞ ¼
1

det P
PðKÞ: ð34Þ

A schematic representation of the relation between those probability functions is outlined in Fig. 6. It shows the change of
the probability function pðkÞ of a point x in the current configuration based on the application of an arbitrary
microdeformation map P when starting from an unperturbed probability function PðKÞ of the same material point X in
the reference configuration. It is noted that the spaces LX and Lx contain microscopic objects such as their corresponding
stretch vectors K and k, respectively. Even though those objects are not considered within an infinitesimal setting, they
belong to such a small scale that they can interfere with objects from the tangent spaces of the body’s configurations B and
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S. Such property is exploited in Section 3.3 by adding the macrovelocity v 7 to the microvelocities v7
ch

� �
in (24). Moreover

they share the metric tensors G and g of the tangential spaces introduced in Section 2.
The microscopic origin of the cause for the evolution of the stretch probability pðkÞ is given by the chemical potential

(27) which, based on (32) and (34), takes the form

UchðkÞ ¼ kBy �
3

2
L2
�lnðdet PÞþ

3

2
l2

� �
ð35Þ

when neglecting expressions constant in k. The resulting expression in (35) is quadratic in terms of the stretches
l¼ jkjg ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
k � gk

p
and L¼ jKjG ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K � GK
p

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k � P�T GP�1k

p
. This result allows for the computation of the average rate of

change of the stretch vector based on (26) as

_k
� �
¼ lk�3Dlg�1ð�P�T GP�1kþgkÞ ð36Þ

written now in terms of the microdeformation map P of (33). The obtained expression in (36) is linear in k from which it
follows that the relation between the probability functions in (34) is preserved, validating the equivalent representation of
the Smoluchowski equation in terms of the tensorial representation introduced above. Insertion of (33) into (36) results in

_PP�1k¼ ½l�3Dlg�1ð�P�T GP�1
þgÞ�k ð37Þ

which results, after multiplying with the metric tensor g from the left and after expressing the velocity gradient l in terms
of the isochoric part of the deformation gradient F , in the evolution equation for the tensorial microdeformation map P as

g _PP�1
¼ g _F F

�1
�3Dlð�P�T GP�1

þgÞ: ð38Þ

This evolution equation consists of a reversible part related to the macrodeformation represented by l¼ _F F
�1

and a
dissipative part due to the diffusion-based mechanism introduced in Section 3 in terms of the diffusion coefficient Dl

defined in (26). To avoid a dependence of the evolution of the microdeformation map on the macrodeformation, the tensor
P is split into P ¼ F PX in terms of a newly introduced tensorial quantity PX : LX�!LX denoted as pre-deformation map. The
corresponding evolution equation can then be derived from (38) as

_PX ¼ 3DlðF
�1

g�1F
�T

P�T
X G�PXÞ ð39Þ

solely in terms of microscopic object. Since PX in general is a non-symmetric tensor, it includes both, information with
regard to pre-stretch and pre-rotation where the latter does not influence the overall free energy and can, therefore, be
excluded from the formulation. This is achieved by the introduction of the symmetric tensorial quantity

A¼ PXG�1PT
X ð40Þ

that contains all the required information about the microdeformation of the viscoelastic subnetwork. The evolution of
that expression can be obtained by plugging (40) into (39) which results in

_A ¼
1

t ðC
�1
�AÞ with

1

t ¼ 6Dl ð41Þ

an evolution equation which surprisingly has a form close to existing models of finite viscoelasticity. Conduct Remark 3
with regard to a further discussion on similarities with already existing models in the literature. The developed evolution
equation in (41) allows for an interpretation of the introduced symmetric tensor A in (40) as some intermediate metric
whose change is driven by its difference when compared to the referential metric C

�1
where C ¼ F

T
gF is the isochoric part

of the right Cauchy Green tensor. An equilibrium state is obtained as soon as those two metric tensors coincide for which a
fully relaxed subnetwork is expected.

4.2. Isochoric viscous free energy and viscous overstress expressions

The goal of this section is to show that the tensorial representation of the change in the probability function determined
by (41) allows further for a closed form expression of the viscous part of the isochoric free energy and the viscous
overstress.

In particular, the macroscopic free energy is obtained by homogenization of the free energy of the thermodynamic
system in (30) for the particular form pðkÞ and UchðkÞ in (34) and (35) over the stretch space as

w
v
¼ n

Z
Lx

pðkÞUchðkÞjdkj ¼ mv

Z
LX

PðKÞ �3
2 L

2
þ3

2l
2

 �
jdKj�lnðdet PÞ

� �
ð42Þ

where the constant terms are neglected in the latter expression and the viscous overstress moduli is introduced as
mv ¼ nkBy. The integration over LX can then be computed by separating the integration over the stretch value L and the
stretch orientation T ¼K=L 2 S2 living on the 2-sphere S2. This leads to l2

¼ k � gk¼L2T � PT gPT and jdLj ¼L2dLjdT j so
that the integral in (42) becomesZ

LX

PðKÞ �
3

2
L2
þ

3

2
l2

	 

jdKj ¼

3

2

Z 1
0

PðKÞL4dL �
Z

S2

ðT � PT gPT�1ÞjdT j: ð43Þ
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Using (32) it can easily be shown that the first integral on the right hand side of (43) becomesZ 1
0

PðKÞL4dL¼
1

4p
¼

1

jS2j
: ð44Þ

The identity 1=jS2j
R

S2 T � T jdT j ¼ 1
3G�1 together with (40) allows to convert the second integral on the right hand side of

(43) into

1

jS2j

Z
S2

T � PT gPT jdT j ¼ 1
3A : C : ð45Þ

Finally one obtains, neglecting again the constant terms, the closed form expression for the viscous part of the isochoric
free energy as

w
v
¼w

v
ðC ,AÞ ¼ 1

2m
v½ðA : C�3Þ�lnðdet AÞ� ð46Þ

a neo-Hookean type expression independent of the influence of possible rotations of the microstructure based on the
chosen form in (40). Consult again Remark 3 for a comparison of the resulting model with already existing models in the
literature.

The resulting closed form expression for the viscous part of the isochoric free energy in (46) allows finally for the
computation of a closed form expression for the corresponding viscous overstress based on (7) as

sv
¼ F ð2@C w

v
ðC ,AÞÞF

T
¼ mvF AF

T
: ð47Þ

Remark 3.
(a)
 Interestingly, the proposed model for the representation of the transient network to describe the rate-dependence
yields the same expressions for the viscous part of the isochoric macroscopic free energy in (46) as well as for the
corresponding viscous overstress in (47) as in Green and Tobolsky (1946). The transient changes in the network in
Green and Tobolsky (1946) are explained by breakage and re-creation mechanisms with their rates being the main
phenomenological quantities. Contrary, the current work introduces effective viscous mechanisms, representing the
temporal chain interactions, through a phenomenological viscosity Z. Based on the resulting identical expressions for
the free energy and the overstresses, the same limitations do apply for both models.
(b)
 In the application of the transient model of Green and Tobolsky (1946) in Lubliner (1985) it is assumed that the
determinant of the internal variable in (40) is constrained to be detA¼ 1 so that the last term in the expression of the
isochoric part of the free energy in (46) cancels. In this work, detA¼ 1 in the initial state as well as after obtaining a
fully relaxed state, but it may deviate from that value for states in between. Still, as outlined below, thermodynamic
consistency of the formulation can be shown.
To outline the thermodynamic consistency of the proposed model one could easily refer to the starting point of the
model in the form of the Smoluchowski equation which is shown to be dissipative in Remark 1. To assure that all the
transformations performed in this section do not yield a different result, the proof is illustrated in detail.

Since the introduced internal variable A in (40) is independent of the macrodeformation, the reduced dissipation
inequality follows from (8) as

Dloc ¼�2@Aw
v
: 1

2
_AZ0 ð48Þ

with the satisfaction of the inequality to be shown in the following. Based on (46), the first term in (48) follows simply as
2@Aw

v
¼ mvðC�A�1

Þ so that together with the evolution equation in (41) the dissipation can be expressed as

Dloc ¼�
mv

2t
ðC�A�1

Þ : ðC
�1
�AÞZ0 ð49Þ

where the inequality follows from the result of Theorem 1.

Theorem 1. Let C be the isochoric part of the right Cauchy Green tensor and A the symmetric tensorial internal variable of the

developed diffusion-based micromechanical polymer model. Then the following inequality holds

ðC�A�1
Þ : ðC

�1
�AÞr0: ð50Þ

Proof. Consider a polar decomposition of the two symmetric tensors C and A as well as their inverses in the form

C ¼
Xndim

i ¼ 1

liui � ~ui, A¼
Xndim

j ¼ 1

mjvj � ~v j and C
�1
¼
Xndim

i ¼ 1

l�1
i
~ui � ui, A�1

¼
Xndim

j ¼ 1

m�1
j
~v j � vj ð51Þ
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where li40, mj40 are the positive eigenvalues and fui, ~uig, fvi, ~v ig are the orthogonal eigenvectors of C and A, respectively.
Since

P
iui � ~u i ¼

P
jvj � ~v j ¼ 1 and 1 : 1¼ 3 the left hand side of (50) becomes

ðC�A�1
Þ : ðC

�1
�AÞ ¼ 6�

X
i,j

½limjþl
�1
i m�1

j �ðui � ~uiÞ : ðvj � ~v jÞ: ð52Þ

To establish the inequality in (50), use is made of the identities aþa�1
Z2 for a40 so that limjþl

�1
i m�1

j Z2 and ðui � ~uiÞ :
ðvj � ~v jÞ ¼ ðui � vjÞð ~ui � ~v jÞ ¼ ðui � vjÞ

2
Z0 and finally

ðC�A�1
Þ : ðC

�1
�AÞr6�2 � 1 : 1¼ 0 ð53Þ

showing (50). &

4.3. Algorithmic representation and implementation

The algorithmic setting and implementation of the proposed model for the representation of the mobile viscous
subnetworks within a time incremental formulation is briefly discussed in this section.

To do so, the evolution equation (41) of the symmetric tensorial internal variable A needs to be discretized in time to
advance from a given discrete time tn towards tnþ1 ¼ tnþDt within a single time step Dt. Application of an unconditional
stable implicit backward Euler integration of (41) results in the update of the internal variable A of a single viscous
subnetwork as

Anþ1 ¼
1

1þDt=t
Anþ

Dt

t
C
�1

nþ1

� �
ð54Þ

in terms of the relaxation time t¼ 1=6Dl with Dl given in terms of solely microscopic objects in (26). Due to the linearity
of the evolution equation (41), its algorithmic update in (54) is obtained in closed form. With the updated internal variable
evaluated, the viscous overstress contribution follows from (47) as

sv
nþ1 ¼ m

vF nþ1Anþ1F
T

nþ1 ¼ m
v 1

1þDt=t F nþ1AnF
T

nþ1þ
Dt

t g�1
nþ1

� �
ð55Þ

in terms of the overstress moduli mv ¼ nkBy. Finally, the sensitivity of the overstress update (55) to the variations of the
deformation at time instance tnþ1 yield the algorithmic tangent moduli in the form

C
v

nþ1 ¼ 2@gs
v
nþ1 ¼�2mv Dt=t

1þDt=t Ig�1 ð56Þ

where Iabcd
g�1 ¼ ½ðg�1Þ

ac
ðg�1Þ

bd
þðg�1Þ

ad
ðg�1Þ

bc
�=2 is the fourth-order identity tensor written in terms of the inverse

metric g�1.

Remark 4.
(a)
 It is emphasized that the result in (55) has to be combined with the elastic response coming from a chosen model for
the elastic ground network in the way outlined in (7). The resulting isochoric response then further has to be combined
with the spherical part as shown in (4) to obtain the final form of the stresses. In an analogous way the sensitivity of
the final stresses is obtained where the expression in (56) results only from the sensitivity of the viscous overstress in
(55) with regard to variations in the deformation.
(b)
 The results in (54)–(56) hold for a single viscous subnetwork in terms of microscopically motivated parameters
t and mv. The proposed viscous model though consists of s viscous subnetworks resulting in totally 2 s parameters.
In particular, the s different relaxation times ftig

s
i ¼ 1 represent the broad dissipation spectra of the model, whereas the

s viscous overstress moduli fmv
i g

s
i ¼ 1 allow for different overstress stiffnesses of the model. Finally, the history of each of

the branches is described by a separate internal variable Ai resulting in the required storage of in total 6 s scalar
variables due to the symmetry of A.
5. Representative numerical simulations

This section evaluates the capacity of the proposed diffusion-based viscoelasticity model by a comparison of the
obtained numerical results with in the literature available experimental data sets. The essential requirement of the model
is its ability to capture the specific viscoelastic response for different test scenarios of rubber-like materials at varying
finite strains within a broad range of applied loading velocities. The material used throughout this section is a highly
saturated nitrile butadiene rubber HNBR50 for which in Section 5.1 the parameters of the numerical model are fitted based
on homogeneous uniaxial cyclic tests for an applied stretch l1 within the interval l1 2 ½0:75,2:0�. Section 5.2 then evaluates
the model by simulating a similar uniaxial cyclic test but for an applied stretch within the purely compressive interval
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i ¼ 1 ¼ f100 ,101 ,102 ,103 ,104

g s and unit overstress moduli f ~mv
i g

s
i ¼ 1 ¼ 1 MPa for the three considered uniaxial cyclic tests with different loading rates

j _l1j ¼ 5� 100 min�1, j _l1j ¼ 5� 10�1 min�1, and j _l1j ¼ 5� 10�2 min�1.
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l1 2 ½0:75,1:0� as well as for an applied stretch within the interval l1 2 ½0:75,2:0� including several relaxation breaks.
Finally, a non-homogeneous three-dimensional shear test is simulated in Section 5.3 for different loading conditions and
compared with available experimental results.
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5.1. Parameter fitting procedure

The experimental data set for this problem is taken from Miehe and Göktepe (2005) for a set of homogeneous uniaxial
cyclic tests of a highly saturated nitrile butadiene rubber HNBR50 produced by the Robert Bosch GmbH. It is outlined in
detail in Miehe and Göktepe (2005) that this material does not exhibit an equilibrium hysteresis so that its response can be
considered as purely viscoelastic. In the following, the characteristic parameters of the model are fitted based on a
homogeneous uniaxial cyclic test for an applied stretch l1 within the interval l1 2 ½0:75,2:0�. Based on the decomposition
of the polymer microstructure into an elastic ground network and a viscous subnetwork, the corresponding parameters of
the models representing both need to be fitted to the actual experimental results.

It is mentioned in Section 2 that the developed diffusion-based viscoelastic polymer model does not rely on the choice
of a particular model for the representation of the elastic ground network. Therefore, throughout Section 5 the non-affine
network model of Miehe et al. (2004) is chosen for the representation of the elastic response of the rubber-like material
which is capable to produce an excellent fit when compared to the equilibrium response of HNBR50 for the homogeneous
uniaxial experiments as outlined in Miehe and Göktepe (2005). In particular, in this work parameters close to those used in
Miehe and Göktepe (2005) are obtained following the parameter fitting procedure outline in their work. The correspond-
ing values are given as N¼5.2207, m¼ 0:1602 MPa, p¼1.0666, U¼11.2122, and q¼0.2013, representing the number of
chain segments in the elastic ground network, the ground state stiffness, the non-affine stretch parameter, the tube
geometry parameter, and the non-affine tube parameter, respectively, for the homogeneous uniaxial cyclic test
outlined below.
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To fit the parameters for the developed viscoelastic part, a homogeneous uniaxial cyclic test performed at three
different absolute loading rates j _l1j ¼ 5� 10�2 min�1, j _l1j ¼ 5� 10�1 min�1, and j _l1j ¼ 5� 100 min�1 of that same
material is used. It is emphasized that the actual loading rates might deviate from these values due to a decreasing
accuracy of the experimental measurements especially for low loading rates. The stretch region of the specimen is
assumed to fall within the closed interval l1 2 ½0:75,2:0�. The experimental stress-stretch curves in terms of the P11

component of the First Piola Kirchhoff stress tensor P¼ sF�T are depicted in the upper left illustration of Fig. 9. One
observes a characteristic response for viscoelastic materials in the form of a stiffer behavior for an increasing loading rate.
Also the area of the resulting hysteresis curves, representing the amount of dissipated energy per cycle, gets larger as the
loading rate increases from 5� 10�2 min�1 to 5� 100 min�1. Finally, one can observe the difference between the first and
second cycles of the loading being more distinct for higher loading velocities. In particular one should notice the change of
the viscoelastic modulus after the first cycle of loading.

To determine whether the proposed model is capable of capturing such an experimentally observed viscoelastic
response a parametric analysis is performed. A single viscous subnetwork responsible for the resulting viscous overstress
is considered in terms of the two parameters in the form of the viscous overstress modulus mv and the relaxation time t.
Whereas the former trivially scales the amount of the overstress, the latter has a more peculiar impact which can be
illustrated for the cyclic uniaxial test considered here. In particular, the left illustration of Fig. 7 shows the overstress
produced by the considered viscous branch depending on the period of the altering stretch T ¼ 2ðlmax

1 �l
min
1 Þ=j

_l1j. One can
observe that the response differs from the stiff quasi-elastic one for T=t51 corresponding to a very quick loading to an
almost vanishing one for T=tb1 corresponding to an extremely slow loading. In the first case there is no time for any
changes to occur in the viscous subnetwork during the loading period, whereas in the latter case the loading is so slow that
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the subnetwork has more than sufficient time to relax fully to an unperturbed stress-free configuration. The viscous
hysteresis is only observed at loading rates for which the stretch period T is comparable to the relaxation time t. This fact
is illustrated by the diagram on the right of Fig. 7 depicting the dependence of the amount of the energy dissipated during
the first cycle on the ratio T=t. This curve shows that a single viscous branch with a given relaxation time will produce any
viscous hysteresis only within a certain range of loading velocities. Its span can be limited to a change of magnitude of
approximately 2 orders of the T=t ratio.

For the representation of the real relaxation spectrum several viscous branches need to be considered. In particular, to
fit the parameters of the experimental stress-stretch curves in the upper left illustration of Fig. 9, a discrete spectrum of
s¼5 relaxation times ftig

s
i ¼ 1 ¼ f100,101,102,103,104

gs is chosen. With the elastic part of the deviatoric stresses obtained
through the non-affine network model in Miehe et al. (2004), the only remaining parameters to be identified are the
corresponding overstress moduli fmv

i g
s
i ¼ 1. Their values are determined by a simple procedure exploiting the linear

dependence of the total overstress on the viscous moduli. To do so, the deviatoric part of the stresses is computed based
on (7) as

sðtÞ ¼ se
ðtÞþ

Xs

i ¼ 1

sv
i ðtÞ ð57Þ

in terms of the elastic equilibrium stress se and the viscous overstresses fsv
i g

s
i ¼ 1. Denoting the cyclic tests in Fig. 9 by the

indices a, b, and c for the different loading rates, one can compute the stress as a mere combination

sabc
ðtÞ ¼ se,abc

ðtÞþ
Xs

i ¼ 1

mv
i
~s v,abc

i ðtÞ ð58Þ

where f ~sv,abc
i gsi ¼ 1 are the normalized overstress profiles shown in Fig. 8 that can be computed separately for each of the s

branches with a unit moduli assigned as f ~mv
i g

s
i ¼ 1 ¼ 1 MPa and the loading rates corresponding to the tests a, b, and c.

The overstress moduli fmv
i g

s
i ¼ 1 are then obtained by minimizing the discrepancy of the stress–strain curves computed by

(58) to the experimental ones illustrated in the upper left illustration of Fig. 9.
Overstress moduli fmv

i g
s
i ¼ 1 ¼ f0:5357,0:0762,0:1205,0:0213,0:0229gMPa are finally obtained as the result of this

procedure. The obtained fit for the cyclic uniaxial tension-compression tests is depicted in the illustrations of Fig. 9 for
the different applied loading rates. The experimental features of the true viscoelastic response are captured reasonably
well by this fit. The level of the stresses and the thickness of the individual hysteresis curves achieved at the three different
loading rates comply rather well with the experimental data. Some discrepancy can be observed when looking at the
difference between the first and the second cycles of the loading which is predicted smaller by the simulations when
compared to the actual experimental results.

5.2. Model verification through uniaxial cyclic tests

After having obtained the characteristic model parameters through the fitting procedure described above in
Section 5.1, the model with those material parameters is used to simulate two further tests, different from the
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one above. A comparison with available experimental results will then allow for an evaluation of the quality of the
model.

The first example is a purely compressive uniaxial tests performed for the same HNBR50 material (Miehe and Göktepe,
2005). The considered stretch values fall within the compressive interval l1 2 ½0:75,1:0� at three different loading rates
j _l1j ¼ 5� 10�2 min�1, 5� 10�1 min�1 and 5� 100 min�1. The above mentioned features of the viscoelastic response at
cyclic loading such as the rate-dependent stiffening, hysteresis growth and difference of the first cycle to the subsequent
ones are captured also for this test as it is illustrated in Fig. 10. However, the experimental data outlined in the top left
illustration of Fig. 10 are not fully reproduced by the simulation. Particularly, it can be seen that the viscoelastic moduli are
underestimated so that substantially a softer response is predicted by the model with the parameter fit obtained above.
The fitting illustrated in Fig. 9 captures nicely only the value of the tangent modulus on the second cycle of the loading,
whereas its value in the beginning of the loading, which coincides for the compressive and tensile dominated tests,
remains underestimated.

The second example to verify the quality of the developed model studies a homogeneous experiment on HNBR50 (Miehe
and Göktepe, 2005) which captures the relaxation during breaks in tension-compression cyclic tests. The same specimen
as in the preceding tests is subsequently loaded and unloaded in a stepwise manner. At each step the stretch changes from
one intermediate value to the next one with an absolute loading rate of j _l1j ¼ 3� 100 min�1 which is kept at a constant
deformation thereafter for a one-hour period. The hold stretch values are l1 ¼ 0:75, 0.875, 1.0, 1.25, 1.5, 1.75, and 2.0.
Altogether the experiment involves 12 relaxation tests, which allow to observe the overstress development at different
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stretch levels as well as its relaxation in detail. When comparing the numerical and experimental results based on the
illustration in Fig. 11, one observes that the fit is quite good in the compressive part of the test and at the moderate tensile
stretches up to the second break. In particular, the relaxation of the viscoelastic stress during the breaks is captured well in
time. To the contrary, at higher tensile stretches the development of the overstress does not match the experimental data.
According to the proposed model, the evolution of the overstress is linearly proportional to the deformation velocity l
(in particular to its component l11 ¼

_l1=l1 in the case of the uniaxial loading), which for the given stretch velocity j _l1j gets
smaller at higher stretches. Correspondingly, the overstress values and the thickness of the hysteresis between the second
and the sixth break get lower as the stretch increases.

5.3. Model verification through non-homogeneous three-dimensional shear tests

Next, the proposed model is evaluated based on its performance when solving a three-dimensional (3D) problem. The
numerical implementation follows the discussion outlined in Section 4.3. Considered is a non-homogeneous shear
experiment in 3D. The specimen is a body of revolution with a concave toroidal lateral surface. Its geometry and
dimensions are illustrated on the left of Fig. 12. The boundary conditions are such that during the experiment the whole
bottom face of the specimen is fixed, whereas the whole top face is subjected to a horizontal displacement in x-direction.
The material of the rubber block, for which experimental results are available from Miehe and Göktepe (2005), is the one
used before in the form of a highly saturated nitrile butadiene rubber HNBR50. The elastic and viscous parameters needed
for the numerical simulation are the ones obtained through the parameter fitting procedure in Section 5.1.

Three loading functions fuiðtÞg
3
i ¼ 1 for the horizontal displacement are considered of which two correspond to cyclic

deformations for u 2 ½�10,10�mm at two different loading velocities j _u1j ¼ 40 mm=min and j _u2j ¼ 4 mm=min. The third
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loading represents a relaxation test at which the top surface is moved in 30 s at a constant rate j _u3j ¼ 40 mm=min up to a
displacement of u3 ¼ 20 mm after which a relaxation period of 60 s follows. An illustration of the loading processes is given
on the right of Fig. 12.

The obtained numerical results of this rubber specimen are simulated using 1152 eight-node Q1P0 mixed brick finite
elements. A comparison with the experimental results for the two cyclic tests is shown in Fig. 13 in the form of the
obtained load-deflection diagrams for the loading rate j _u1j ¼ 40 mm=min on the left and j _u2j ¼ 4 mm=min on the right of
that illustration. The results show good agreement since the extremal force values attained in both tests as well as the
shape of the viscous hysteresis do agree with quite good precision. Again, the initial response to the first loading (from
u¼0 to 10 mm) is reproduced not as good as the subsequent cycles.

The third loading scenario is evaluated in Figs. 14 and 15, showing the true shear stress contours at the end
of the loading at time t¼ 30 s and after the relaxation period at time t¼ 90 s, respectively. One can observe
quite a substantial relaxation of the stress depicted at the top of both figures in the form of the outlined sxz stress
distribution. The perturbation induced by the initial deformation of the material decays due to the diffusion mechanisms
discussed in Section 4. The extend to which the microdeformation relaxes is naturally different for the five
mobile subnetworks. An important observation is, that the diffusional motion of the mobile chains results both, in
re-orientation and stretch relaxation as further shown in Figs. 14 and 15. Observed is the evolution of the internal state of
the material point placed in the geometric center of the specimen. This is given by the partial distributions of the
stretch piðkÞ ¼ PðP�1

i kÞ=detðPiÞ in the five mobile subnetworks. The average stretch distribution in the overall mobile
network pðkÞ ¼ 1=n

P5
i ¼ 1 nipiðkÞ represents the total re-distribution of the stretch vector. This re-distribution incorporates

both re-orientation and stretch relaxation. The former is illustrated by the orientation density functions plotted over the
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spatial directions t in the orientation space and retrieved for each of the subnetworks as ciðtÞ ¼ 4p
R1

0 pðltÞl2 dl where the
factor 4p comes from the convention that a homogeneous distribution corresponds to ciðtÞ ¼ 1. The average for
all the mobile polymer chains cðtÞ ¼ 1=n

P5
i ¼ 1 niciðtÞ is shown on the right of that row. The stretch relaxation is presented

by the distribution of the affine microstretch over the directions liðtÞ ¼ ðP
�1
i t � P�1

i tÞ�1=2 shown at the very bottom of
Figs. 14 and 15.

6. Conclusion

A new micromechanically motivated transient network model is developed in this work and incorporated into the
framework of finite rubber viscoelasticity. The model is based on diffusion processes of the highly mobile macromolecules
forming the individual polymer chains. These processes result in the evolution of the probability for finding chain
segments within a certain stretch state which is governed by the generalization of the Smoluchowski equation from non-
interacting particles towards flexible polymer chains in this work. It is shown how a tensorial representation of such
evolution yields closed form expressions of the viscous part of the isochoric free energy as well as for the viscous
overstress which interestingly agree with the corresponding expressions obtained in the transient network theory of
Green and Tobolsky (1946), even though the underlying micromechanical model differs. Finally, the model is evaluated
based on its application in homogeneous and non-homogeneous tests where the numerical results are compared with in
the literature available experimental data sets. In those simulations, the non-affine network model of Miehe et al. (2004) is
chosen for the representation of the elastic response. The obtained results are satisfactory when taken into account the
simplicity of the obtained viscous response in the proposed transient network model.

Modifications of the micromechanically motivated model in the sense that it results in more advanced evolution laws
for the polymer stretch probability may be achieved by differently accounting for translational and rotational degrees of
freedom on the microscopic level. It is furthermore desired to develop a microscopic model which yields a physical based
discrete relaxation spectra. These are possible directions for future research in this area.
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