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This paper presents a non-affine homogenization scheme for materials with
a random network microstructure. It is based on a newly developed
kinematic constraint that links the microscopic deformation of the network
to the macroscopic strain of the material. This relation accounts for the
network functionality and is established by means of maximal advance
paths that are long enough to reach the macroscopic scales of the
continuous body and deform accordingly but are also composed of the
microscopic fibres that follow the network deformation. The exact
distribution of the variable fibre stretch is determined by the principle of
minimum averaged free energy, which ultimately allows one to derive the
homogenized elastic response of the network at equilibrium. Besides the
general formulation, the model is presented in detail for the case of
tetrafunctional networks, for which the micro–macro relation and the
expression for the homogenized elastic stress are derived in a compact and
interpretable tensorial form. The performance of the model as well as the
convexity and stability of the obtained homogenized response of the
material is examined for networks composed of two different types of
fibres, namely flexible chains and stiff filaments. The qualitative behaviour
of the networks predicted for the two considered cases agrees with
experimentally observed phenomena for soft materials. This includes a
consistent explanation for the difference in the stiffness of elastomers at
uniaxial and equibiaxial extension as well as a validation of recent
experimental investigations of atypical normal stress amplitudes in
biopolymer gels under shear loading.

Keywords: random networks; micromechanics; homogenization; soft
matter; elastomers; biopolymers

1. Introduction

Network microstructures are commonly encountered in materials of artificial as well
as natural origin. Elastomers [1], hydrogels and soft biological tissues [2–4], non-
woven fabrics [5,6], and cellular foams [7] are all on the microscopic level composed
of elongated one-dimensional elements one can generally address as fibres. When
these soft materials are subject to a macroscopic strain, the underlying microstruc-
ture undergoes a peculiar deformation. The forces produced by the deformed
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filaments and their interaction within the irregular three-dimensional network
constitute the macroscopic stress response of the material. The knowledge about the
micromechanics of random networks is therefore crucial for the understanding of
mechanical properties like elasticity displayed by the above-mentioned soft
materials.

Their networks are essentially discrete mechanical systems, where single fibres are
the basic structural units. The existing theories and models of random networks in
the literature can be categorized as done in Table 1. The first category includes the
discrete models that reproduce the microstructure in detail. Such an approach allows
one to examine networks of different nature and capture the effect of various specific
phenomena such as the entropic and enthalpic response of fibres to axial straining
and their instant bending [8–10], initial internal stresses [11,12], or thermal
fluctuations of network junctions [13]. The network simulations provide deep
insight into the microscopic mechanisms of the macroscopic response produced by
these soft materials. Nevertheless, they often require an enormous computational
effort and produce results that display statistic scattering which is different from one
generated random network to another.

The alternative class of models discussed in Table 1 is based on the mean field
approach for the description of random networks. They are commonly used to
constitute the material response of continuous solids in finite element simulations.
These theories treat the large microscopic networks in terms of average distributions
instead of resolving them in detail. In particular, the considered statistical quantities
describe the microdeformation of the network. Their relation to the macroscopic
strain, which is the main external action on the material, is the key question
addressed by these mean field models in different ways. The most obvious
assumption is that the microdeformation and the mean quantities defining it
change affinely with the deformation gradient of the solid. This can be quite
commonly observed in the classical models for rubber elasticity [14,15] as well as for

Table 1. Overview of random network models.

Refs. Geometry Kinematics Microdeformation

Discrete models

[8–13] Randomly generated
discrete network of
fibres

Stretch and bending of
fibres by the correspond-
ing degrees of freedom

Generic network deformation
as a result of statical or ther-
modynamical equilibrium

Network average models
[14–17] Statistical distribu-

tion of fibre geome-
try in the network

Axial stretch of fibres
from this distribution

Affine deformation of the
microstretch distributions

[22–25] Eight fibres placed on
the diagonals of a
rectangular box

Identical axial stretch of
these eight fibres

The rectangular box deforms
with principal stretches

[20,27] Isotropic distribution
of fibre orientations

Axial stretch as a function
of the initial orientation

Non-affine microstretch mini-
mizing the averaged energy

2 M. Tkachuk and C. Linder
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more recent works on semiflexible networks [16,17]. Comparison to the experimental
data [18] as well as the results of discrete network simulations [9,10] indicate though
that the affine assumption is not universally valid. It does not explain numerous
phenomena known for soft matter which are attributed to the non-affine character of
the microdeformation. In this work two of them are addressed. These are the
difference in the locking strain for uniaxial and equibiaxial loadings of elastomers
composed of flexible chains with limiting extensibility [18–20] as well as the transition
from the soft bending dominated to the stiffened stretching dominated response of
dilute biological gels composed of semiflexible filaments [9–11,21]. In reality the non-
affinity comes from both, the peculiar response of fibres and their interaction in the
network which is commonly highly non-linear, and the complex kinematics of the
networks described by the internal degrees of freedom. The latter issue, the adequate
representation of the network microdeformation, is a central point for the
development of micromechanically based models of soft matter.

Several non-affine models have so far been developed to resolve this issue. The
eight-chain model proposed in [22] for rubber-like elastomers and later adopted for
other materials [23–25] postulates the distribution of stretch identical to the stretch of
eight particularly aligned filaments. In the seminal work [20], the non-affine
microsphere model suggests certain variations of stretch constrained by a specific
relation to the macroscopic deformation with the exact distribution of stretch
determined by the principle of minimal free energy. A similar approach can be found
in the analytical model of [26] with respect to the principle of maximal entropy. The
two latter models introduce a concept of the relaxing variable microdeformation that
is subject to the kinematic constraints of the macroscopic strain. A different way to
introduce non-affinity can be found in [27] where a phenomenological compliance
stretch is considered. The concept is in good agreement with the nature of the elastic
response produced by the microstructure of a solid at equilibrium. Nevertheless, the
already existing non-affine network models of this type can be improved by replacing
the often artificial design of the micro–macro relation with a physical-based relation.

In this work we propose a new micromechanically justified construction of the
kinematic constraints based on the formalism of maximal advance paths in the
network. These paths allow one to perform the transition between the microscopic
scale of single fibres to the macroscopic scale of the deforming continuous solid.
These constraints result in an efficient homogenization scheme inspired by the
orientation-based approach proposed in [20] which is characterized by a well
interpretable expression of the homogenized stress in terms of the microscopic fibre
forces.

The paper is organized as follows. In Section 2, the statistical description of the
network and its microdeformation is introduced. Section 3 is devoted to the
formulation of the maximal advance path constraint for an arbitrary functionality of
the network which is the main contribution of this work. Next, a particular case of
tetrafunctional networks is chosen and treated in more detail to illustrate the
performance of the proposed model. Section 4 concerns the relaxation of the
microstretch in the network governed by the principle of the minimum averaged free
energy and the derivation of the homogenized elastic response of the material at
equilibrium. Finally, the performance of the model is investigated in Section 5 for
two qualitatively different types of fibre response in the form of flexible chains as
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well as stiff filaments. The predicted non-affine deformation in networks comprised
of such fibres allows one to explain the difference in stiffening of elastomers under
uniaxial and equibiaxial extension as well as the atypical stress responses recently
observed in experiments on biopolymer gels. Section 6 gives a summary to the
presented results and elaborates on possible future extensions of the approach.

2. Statistical description of random networks

Microscopic networks considered in this work have an irregular three-dimensional
structure. They are formed by a large number of fibres connected together at
junction points. Since one of their dimensions dominates over the others, these fibres
can be considered essentially as one-dimensional entities as displayed in Figure 1.

Following the motivation given in the introductory Section 1, this work is based
on the statistical approach to the treatment of random networks. Within this
approach individual fibres are not treated separately but are included into a
statistical assembly in which they are differentiated by certain key attributes. In
particular, the statistical description proposed in this section classifies the fibres of
the network by their initial orientation in the undeformed state similar to [20,28]. The
deformation of the network is correspondingly not determined by the deformation of
single fibres but by the distribution of the deformation parameters over the
introduced assembly of fibres. The network total quantities such as the elastic energy
are then consistently derived by distribution averaging. This formalism naturally
provides the homogenization of random network microstructures.

The proposed statistical description is based on the following assumptions about
the network composition, geometry and deformation:

(1) junction points do not perform any thermal motion, hence they do take certain
positions in space;

(2) all the fibres in the network are of one single type and have uniform properties
(equal molecular weight, contour length, stiffness etc.);

(3) in the initial network configuration all the fibres have the same end-to-end
distance R0 and are oriented isotropically in all the directions;

(4) the deformation of fibres with equal initial orientation coincides strictly.

Figure 1. The random network microstructure of a continuous solid B at a material point P
(on the left) formed by long fibres (straight lines) with the end-to-end vectors plotted at one of
the junctions (black arrows). Statistical description of a random network (on the right) as an
assembly of fibres with initial isotropic orientations j0 uniformly distributed on a unit sphere
S0 and the network deformation defined by the microstretch vector function j(j0):
j02S0 � j2S�� IR3.

4 M. Tkachuk and C. Linder
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With these assumptions, the identification of the network with the assembly of fibres
distinguished only by their initial orientation is justified.

Without loss of generality it can be assumed that in the initial configuration all
the fibres have a unit stretch jj0j ¼ 1 where the initial stretch vector j0¼R0/R0 is the
end-to-end vector R0 scaled by the initial end-to-end distance R0. The dimensionless
stretch vector is preferred over the end-to-end vector for the characterization of the
fibre microdeformation. This allows one to avoid an otherwise needed account of the
length R0 of the fibres which is uniform in the network. Therefore, j0 is a unit vector
representing the initial orientation of the fibres by which they are distinguished in the
undeformed network. The assembly of all the fibres can furthermore be associated
with a unit sphere S0, each point on the sphere corresponding to a certain fibre
orientation j0 as shown in Figure 1. Since all the fibres initially are assumed to be
equally distributed in all the directions, or correspondingly over the unit sphere S0,
the orientation density function scaled by the factor 1/jS0j ¼ 1/(4�) has a uniform
unit value in the undeformed state, namely p0(j0)¼ 1. This function expresses the
fraction of fibres in the network with an initial orientation in the infinitesimal
vicinity dj0 of j0 as

1

jS0j
p0ðj0Þjdj0j ¼

1

jS0j
jdj0j: ð1Þ

The averaging over the network of an arbitrary quantity �¼ �(j0) which depends on
the initial fibre orientation is then performed by means of the surface integral

h�i ¼
1

jS0j

Z
S0

�ðj0Þjdj0j: ð2Þ

The deformation of the network within the proposed formalism is described by a
vector-valued function j(j0). Its value is the microstretch vector defined as j¼R/R0

where R is the end-to-end vector of the deformed fibres with reference orientation j0.
This function maps the microsphere S0 into IR3 or more particularly, provided the
function j(j0) is continuous, onto a stretch surface S� as shown in Figure 1 based on

jðj0Þ : j0 2S0 � j2S� � IR3: ð3Þ

In the deformed state the averaging of a stretch dependent quantity �¼ �(j) is
performed similar to (2) as

h�i ¼
1

jS0j

Z
S0

�ðjðj0ÞÞjdj0j: ð4Þ

The proposed statistical description contains the most essential information
about the network and its deformation which is provided by the stretch vector
function. This is essential for the development of the model presented in this work.
Other orientation-based network models operate with scalar fields such as the
absolute value of the fibre stretch [20,27], the orientation density function [28,29], or
the end-to-end vector distribution density [26,30], which is less informative. As an
exception, the microsphere-based model [31] incorporates a variable vector field,
although this is different to the one presented in this work. It does not describe the
actual stretch of the fibres but their referential reorientation due to the remodeling of
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a soft tissue. In this work the evolution of the fibre stretch vector represents the two
main deformation mechanisms in the network: the axial straining of fibres and their
reorientation. The response of fibres to the axial stretch is used to constitute the
homogenized elastic properties of the material in Section 4. Still, as introduced so far
the distribution of the microstretch is arbitrary. Its relation to the macroscopic
deformation is established by a special kinematic constraint derived in the next
section.

Remark 1:

(1) Only half of the microsphere matters for the above network characterization,
since there is no essential difference between the orientations j0 and �j0. To
not favour one particular hemisphere it is assumed that the fibres are equally
divided between opposite directions.

(2) To preserve the intrinsic central symmetry of the stretch vector distribution
within the proposed statistical description, the map (3) has to satisfy the
condition j(�j0)¼�j(j0).

(3) The developed model deals with finite material strains as well as large fibre
deformations and correspondingly is set up within the non-linear geometry
framework. Nevertheless, the tensorial derivations performed in this work
are for simplicity presented with respect to orthonormal cartesian coordi-
nates. Hence, metric tensors are overall omitted.

3. The maximal advance path constraint

In this work, network paths are considered to formulate the constraints relating the
microdeformation of the network to the macrodeformation of the continuum body.
These paths are formed by the fibres connecting the junctions of the network.
As long as the network is static, like in the case of elasticity, these paths remain
unbroken during deformation. A path, consisting of i microscopic fibres with stretch
vectors ji, can connect points of the body at a distance above the microscale of the
network, hence ascending to the scale of the macroscopic continuum. The path is
though still restricted to the material point level so that the overall deformation is
characterized by the deformation gradient F. This allows one to establish the
connection between the network scales and the material point scales linking the
microdeformation to the macrodeformation.

In particular, specific paths that have the maximal advance in a certain direction,
called maximal advance paths, are considered in this work. They are defined in the
initial undeformed configuration of the network where all the chains have unit
stretch and are oriented equally in all directions. Let l0 with jl0j ¼ 1 be a certain
direction of interest. Then the advance of a fibre with orientation j0 along l0 is

� ¼ j0 � l0: ð5Þ

The cumulative distribution function for this random scalar variable is

F �ðxÞ ¼ Pð� ¼ j0 � l04xÞ ¼
1

jS0j

Z
S0;x

jdj0j ¼
xþ 1

2
, ð6Þ
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where S0,x¼ {j02S0: j0 � l04 x} is the subset of orientations in which the advance in

direction l0 is lesser than or equal to x. The corresponding probability density

function is then computed as

p�ðxÞ ¼
d

dx
F �ðxÞ ¼

1

2
: ð7Þ

Consider now a junction which belongs to a maximal advance path schematically

illustrated in Figure 2. It is connected to f fibres with initial orientations fji0g
f
i¼1,

where f is the functionality of the network. Provided the path has come to the

junction by the fibre jf0, there will be f� 1 remaining fibres along which it may

propagate further. These fibres have orientation vectors fji0g
f�1
i¼1 , being random

variables distributed uniformly over the unit sphere S0 and are assumed to be non-

correlating. The advance in the direction l0 along these fibres is given by f� 1

random variables �i ¼ ji0 � l0, each having the distribution (6). The maximal advance

from the junction in the direction l0 is then given by

�m ¼ maxf�ig f�1i¼1 , ð8Þ

which is a random quantity characterized by the cumulative distribution function

F �mðxÞ ¼ P �m ¼ maxf�ig f�1i¼14x
� �

¼
Yf�1
i¼1

Pð�i4xÞ ¼
xþ 1

2

� � f�1

ð9Þ

and the corresponding probability density function

p�m ¼
f� 1

2

xþ 1

2

� � f�2

: ð10Þ

Whereas the average advance in the network h�i ¼ 0, the average maximal advance

h�mi ¼

Z 1

�1

xdF �m ðxÞ ¼
f� 2

f
ð11Þ

l0

λ1
0 = λm

0

λ2
0

λ3
0

λ4
0 = λf

0

ξm

1

1 2

2

3

3

4

4 5

5

6

6

7

7

8 9

Figure 2. The maximal advance path constraint. Illustration of a cross-link belonging to a
path and the chain with maximal advance �m along the direction l0 on the left. Illustration of
the effect of functionality f on the straightness of the path on the right where two networks
with f¼ 3 (solid lines) and f¼ 4 (additional segments plotted in dashed lines) and the two
resulting maximal advance paths are shown. The higher the functionality, the straighter the
paths become.

Philosophical Magazine 7

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
St

ut
tg

ar
t]

, [
C

hr
is

tia
n 

L
in

de
r]

 a
t 0

5:
52

 3
0 

A
pr

il 
20

12
 



is non-zero. In addition to the value of the maximal advance �m it is important to

know by which fibre it is attained. Let jm0 ¼ argmaxfj0 � l0, j0 2 fj
i
0g

f�1
i¼1 g be the fibre

with the maximal advance in the direction l0 and belong to the path. Then it has a

distribution

pmðj0, l0Þ ¼ ð f� 1Þ
j0 � l0 þ 1

2

� � f�2

, ð12Þ

which is radially symmetric on the unit sphere of orientations S0 relative to the l0
axis. It represents the assembly of fibres jm0 in the maximal advance path in the

direction l0 and has the property

hjm0 i ¼
1

jS0j

Z
S0

j0p
mðj0, l0Þjdj0j ¼

f� 2

f
l0: ð13Þ

The end-to-end vector Rl0 of a long maximal advance path composed of nl0 fibres,

where nl0 is large, is then given by

Rl0 ¼ nl0hR0j
m
0 i ¼ nl0R0

f� 2

f
l0 ð14Þ

in terms of the average of the orientation vector in the path (13). Once the length of

such a path is large enough it becomes a macroscopic object. Correspondingly, one

can expect that with the macroscopic deformation its end-to-end vector will change

affinely following the deformation gradient map F, i.e.

Rl ¼ FRl0 ¼ nl0R0
f� 2

f
l where l ¼ Fl0: ð15Þ

On the other hand this deformed path is composed of the deformed fibres jm ¼ jðjm0 Þ
from the assembly (12) and Rl is alternatively given by the path average

Rl ¼ nl0hR0j
m
i: ð16Þ

Matching (15) and (16), one obtains for all path directions l0 the relation

hjmi ¼
f� 2

f
l �

1

jS0j

Z
S0

jðj0Þp
mðj0, l0Þjdj0j ¼

f� 2

f
Fl0, ð17Þ

which provides, since l02S0, an infinite set of constraints to the variable microscopic

deformation field j(j0). The derived constraint (17) is denoted as the maximal

advance path constraint (MAPC).
At least one microdeformation will always satisfy the constraint, namely the

affine stretch �kðj0Þ ¼ Fj0. In case all the fibres jm0 in the path deform affinely as
�km ¼ F jm0 the path itself will also undergo an affine deformation

h�kmi ¼ Fhjm0 i �
1

jS0j

Z
S0

�kðj0Þp
mðj0, l0Þjdj0j ¼

f� 2

f
Fl0: ð18Þ

The full affine network models (FANM) [15,28] postulate that the networks strictly
follow this microdeformation in response to the macroscopic strain disregarding the

nature of fibres in the network. In contrast, the proposed approach in this work
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suggests that �k is just one of the many other variations of the microstretch

kinematically compatible with the macroscopic deformation. The response of the

affine network is later compared to the alternative behaviour predicted by the

proposed model in Section 5.
The micro–macro relation (17) takes the form of a linear 1-type Fredholm

integral equation and depends on the function j(j0) which has an essential property

of negative symmetry as pointed out in Remark 1. Therefore only its values in one

hemisphere of orientations matter so that the average of the fibre stretch vector in

the deformed path can be alternatively written as

hjmi ¼
1

jS0j

Z
S0

jðj0Þ ~p
mðj0, l0Þjdj0j ð19Þ

where ~pmðj0, l0Þ ¼ 1
2 pmðj0, l0Þ � pmð�j0, l0Þ½ �. Since ~pmðj0, � l0Þ ¼ � ~pmðj0, l0Þ,

another property of the assembly average is

hjmijl0¼�l0¼
1

jS0j

Z
S0

jðj0Þ ~p
mðj0, �l0Þjdj0j ¼ �hj

m
i: ð20Þ

As long as the right-hand side of (17) is an odd function of l0 it is sufficient that the

equality is satisfied for path directions l0 spanning only half of the orientation space,

i.e. the constraint (17) is a Fredholm type equation on a hemisphere S1=2
0 :

1

jS0j

Z
S0

jðj0Þ ~p
mðj0, l0Þjdj0j ¼

f� 2

f
Fl0 8l0 2S

1=2
0

with j: S1=2
0 ! IR3, jð�j0Þ ¼ �jðj0Þ, ~pmðj0, l0Þ : S

1=2
0 � S1=2

0 ! IR

ð21Þ

A closer examination of the kernel function ~pmðj0, l0Þ of the Fredholm integral

operator in (21) reveals that it is a polynomial for the natural values of the network

functionality f2 IN. It can be written as a finite series expansion

~pmðj0, l0Þ ¼
X
�

��ðj0Þ �ðl0Þ, ð22Þ

where �2 {1, . . . , a}¼A and f��ðj0Þg
a
�¼1 and f �ðl0Þg

a
�¼1 are linearly independent so

that the Fredholm integral operator has a finite rank and its image is a linear

combination of f �ðl0Þg
a
�¼1.

As long as the affine stretch satisfies the maximal advance path constraint (18),

the integral equation (21) can be rewritten in a homogeneous form

1

jS0j

Z
S0

jðj0Þ � �kðj0Þ
� �

~pmðj0, l0Þjdj0j ¼ 0 ð23Þ

in terms of the difference of the microstretch j and the affine stretch �k. Using the

series expansion (22), one can further derive

Xa
�¼1

1

jS0j

Z
S0

jðj0Þ � �kðj0Þ
� �

��ðj0Þjdj0j

� 	
 �ðl0Þ ¼ 0 8 l0 2S0: ð24Þ
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Due to the linear independence of f �ðl0Þg
a
�¼1, (24) is satisfied if and only if

1

jS0j

Z
S0

jðj0Þ � �kðj0Þ
� �

��ðj0Þjdj0j ¼ 0 8�2A ð25Þ

so that the maximal advance path constraint (21) is essentially equivalent to a finite
set of constraints (25).

For an illustrative purpose the detailed presentation of the maximal advance
path constraint and the resulting homogenization scheme in the remaining part of
this work is limited to networks of functionality f¼ 4. Firstly, such networks are
most typical for vulcanized rubbers and biopolymers [32]. Secondly, for this value
of functionality the proposed micro–macro constraint takes a very particular
intuitive form. The average maximal advance (11) in the undeformed configura-
tion takes with f¼ 4 the value h�mi ¼ 1/2. This means that the maximal advance
paths in tetrafunctional networks are quite far from being straight.
Correspondingly, one can expect an essential non-affinity due to the potential
stretch redistribution which is subject to the constraint (21). To obtain the
equivalent finite set of constraints (25), consider the particular expression the
kernel ~pm takes for f¼ 4, i.e.

~pmðj0, l0Þ ¼
1

2
3
j0 � l0 þ 1

2

� �2

�3
�j0 � l0 þ 1

2

� �2
" #

¼
3

2
j0 � l0, ð26Þ

which is a polynomial in terms of cartesian coordinates of the initial orientation
vector j0¼ [x0, y0, z0] and the path direction vector l0 ¼ ½ ~x0, ~y0, ~z0� with j0 � l0 ¼
x0 ~x0 þ y0 ~y0 þ z0 ~z0. The kernel can be written in the form of the series expansion
(22) with

��ðj0Þ

 �3

�¼1
¼ x0, y0, z0

 �

and  �ðl0Þ

 �3

�¼1
¼

3

2
~x0,

3

2
~y0,

3

2
~z0

� 	
: ð27Þ

With the particular set of linearly independent ��ðj0Þ

 �3

�¼1
given in (27) the three

vectorial constraints (25) can be represented in the following tensorial form

1

jS0j

Z
S0

jðj0Þ � �kðj0Þ
� �

� j0jdj0j ¼ 0: ð28Þ

The average of the dyadic product h�k� j0i can be easily found as

1

jS0j

Z
S0

�kðj0Þ � j0jdj0j ¼ F �
1

jS0j

Z
S0

j0 � j0jdj0j ¼
1

3
F ð29Þ

with the help of the identity hj0 � j0i ¼ 1
3 1. This ultimately allows one to obtain the

formulation of the maximal advance path constraint for tetrafunctional networks in
the form

1

jS0j

Z
S0

jðj0Þ � j0jdj0j ¼
1

3
F, ð30Þ

which appears to be very natural. Indeed, the term j � j0 in a certain way represents
the deformation of a single fibre, as it maps the initial unit orientation vector j0 of

10 M. Tkachuk and C. Linder
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the fibre onto the fibre stretch vector j. Correspondingly, (30) can be viewed as the

relation between the averaged network microdeformation and the local macroscopic

deformation represented by F.
To conclude, this section gives the general formulation of the maximal advance

path constraint (21). It relates the microdeformation of the network described within

the statistical representation introduced in Section 2 to the local macroscopic

deformation of the material. It is shown that for a given functionality f of the

network only a finite set of constraints (25) is imposed onto the microstretch j(j0).
The functionality included in the formulation of the constraints is a very important

characteristic of the network topology. Its qualitative influence on the kinematics of

the network is discussed in the section and the remarks below. Ultimately, for the

case of f¼ 4, to which the remaining part of this work corresponds, the maximal

advance path constraint is derived in the particular tensorial form (30).

Remark 2:

(1) The higher the functionality of the network the larger and closer to 1 is the

value of the average maximal advance (11) due to the availability of

straighter paths in networks with a greater number of fibres at each junction.
(2) An increased functionality f of the network results in an increase of the

number of the degree of the polynomial (22) as well as an increase of

independent constraints (25) on the microstretch j. Correspondingly, for

higher values of the network functionality one will observe a smaller

deviation from the affine stretches �k in the network. This agrees with the

above remark on the straightness of the maximal advance path. In a path

which is too straight there is almost no place for stretch redistribution.
(3) Although the set (27) makes use of a particular orthonormal coordinate

system in the reference configuration it is invariant to coordinate transfor-

mation. That is if one performs a coordinate transformation

Q : ½x0, y0, z0� ! ½x
0
0, y
0
0, z
0
0� the set (27) can be restored in its particular

form by a linear recombination.

4. Network relaxation and homogenized response at equilibrium

The maximal advance path constraint formulated in the previous section does not

define the microstretch j but only restricts its variation at a given macroscopic strain.

To constitute ultimately the microdeformation of the network, the principle of

minimum free energy is used in this work. It states that within all the kinematically

possible microdeformations the fibres will deform so that the total network energy is

minimized. This approach was initially proposed in [20] for the formulation of the

non-affine microsphere model of rubber elasticity, which establishes a general

homogenization scheme adopted in this work to incorporate the kinematic micro–

macro relation developed in the previous section. The elastic response of the network

retrieved by this principle can be viewed as a result of microstructure relaxation by

the internal degrees of freedom. The latter are statistically represented by the fibre

stretch function j(j0) as described in Section 2.
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The statistical representation of the network microdeformation exploited so far

contains only information about the stretch of the fibres. Consequently, within the

proposed approach one can only consider the situation in which the free energy

allows for an expression in terms of the fibre stretch. In particular, this can certainly

be done in the case when the networks are composed of fibres that only interact at

the junctions and themselves have a free energy that simply changes with the axial

strain. Unentangled networks of flexible polymer molecules in some swollen and dry

elastomers as well as semiflexible biopolymer networks and networks with stiff

mechanical filaments fit well into this category.
As long as the energy originates from separate fibres the network total energy

Cnet can be generally computed by the sum of energy contributions  f (jjj) of all its
fibres, which can be expressed in terms of the network average as

Cnet½j� ¼ nh f ðjjjÞi: ð31Þ

Here n is the initial network density expressing the number of fibres in the unit

volume of the undeformed material, to which also the homogenized free energy Cnet

is referred. With respect to the given form of the network energy in (31) one can

specifically address the variational principle stated above as the minimum averaged

free energy principle. Its mathematical formulation restricted to the central case of

tetrafunctional networks with f¼ 4 is based on the tensorial version of the maximal

advance path constraint (30) and reads as:

Cnet½j� � h fi ¼
1

jS0j

Z
S0

 f ðjjðj0ÞjÞjdj0j �!
jðj0Þ

min

hj� j0i ¼
1

jS0j

Z
S0

jðj0Þ � j0jdj0j ¼
1

3
F:

ð32Þ

The fibre energy  f is assumed to be a convex, continuous and differentiable

function of jjj. By the first assumption fibre instabilities are excluded from

consideration. The second one guarantees that the functional Cnet[j] or the

average fibre energy h fi, when defined, are differentiable with respect to the

microstretch function j. There are some further properties of  f that define

whether the constrained minimization problem (32) is well-posed. These are

discussed in the next section with respect to two practically important types of

fibre responses. So far the existence and uniqueness of a stretch solution j* is

postulated for a yet unspecified set of deformations F. The minimizing stretch can

be, correspondingly, viewed as a function j*¼ j*(F) of the deformation gradient

F2F � SOð3Þ.
In the remaining part of this section the properties of the equilibrium

microdeformation of the network and its relaxed homogenized response resulting

from (32) are examined. For this purpose consider the Lagrangian of the constrained

minimization problem (32) which can be written as

L½j, l� ¼
1

jS0j

Z
S0

 f ðjjðj0ÞjÞjdj0j � l :
1

jS0j

Z
S0

jðj0Þ � j0jdj0j �
1

3
F

� �
, ð33Þ

where l is the second-order tensor of Lagrange multipliers, as long as the micro–

macro constraint (30) is tensorial for the considered case of tetrafunctional networks.
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The Euler–Lagrange equation enforces the vanishing variation of L with the

microstretch j at j*. The stationarity condition gives the relation

f 	f ¼ ff ðjj
	
jÞ
j	

jj	j
¼ lj0, ð34Þ

where ff¼ @ f/@j is the stretch conjugate fibre force which relaxes towards

f 	f ¼ ff ðj
	
Þ at equilibrium and ff¼ @ f/@jjj is its magnitude proportional to the

actual fibre force Ff¼ @ f/@jRj.
Once the equilibrium microstretch response j* is known for any admissible

deformation F2F the homogenized properties of the material can be determined. In

particular, one can find the change of the total free energy of the relaxed network

with the variable macroscopic deformation

C	netðF Þ ¼ nh f ðjj
	
jÞi ¼

1

jS0j

Z
S0

 f ðjj
	
jÞjdj0j: ð35Þ

Furthermore, the homogenized mechanical stress can be obtained by the standard

reasoning of thermodynamics [33] as the derivative of the free energy with respect to

the strain field. The derivation in the deformation gradient results in the first Piola–

Kirchhoff stress tensor computed as

P ¼ @FC	net ¼ nh@F f ðjj
	
jÞi ¼ n

1

jS0j

Z
S0

f 	f �
@j	

@F
jdj0j: ð36Þ

The integral on the right-hand side of this equation can be further transformed into

the sum

1

jS0j

Z
S0

f 	f �
@�k

@F
jdj0j þ

1

jS0j

Z
S0

f 	f �
@ ðj	 � �kÞ

@F
jdj0j ð37Þ

in which the second term is identically zero. To prove this claim, note that the

constraint in the form (28) is invariantly satisfied by the equilibrium stretch j* for all

F so that

hðj	 � �kÞ � j0i 
 0 ) h@Fðj
	
� �kÞ � j0i 
 0: ð38Þ

Contracting this identity with the tensor l of Lagrange multipliers yields the

equation

1

jS0j

Z
S0

ðlj0Þ �
@ ðj	 � �kÞ

@F
jdj0j ¼ 0 ð39Þ

in which the left-hand side can be identified as the second integral in (37) using the

relation (34). With the help of the identity @F �k ¼ 1� j0 the remaining part of the

expression gives the elastic stress in the form

P ¼ n
1

jS0j

Z
S0

f 	f � j0jdj0j ¼ nh f 	f � j0i ð40Þ

in terms of fibre forces in the relaxed network. Again, just as the constraint (30) the

stress is obtained in a very natural form. Similar expressions are generally derived for
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continuous bodies in which the stress is transmitted by microscopic axial forces [34].
This, in particular, indicates that the statistical description of the microdeformation
proposed in Section 2 and the maximal advance path constraint developed in
Section 3 together adequately represent the kinematics of the network and the
continuous solid. With the expression (34) for the fibre force vector f 	f , the first
Piola–Kirchhoff stress tensor can be alternatively derived in a compact way as

P ¼ nhðlj0Þ � j0i ¼
1

3
nl, ð41Þ

which establishes the stress-like nature of the Lagrange multiplier tensor l.
It is again emphasized that the obtained particular results are derived in this

section for the tetrafunctional networks with f¼ 4 for which the micro–macro
constraint is given by (30) and the energy related to fibre straining is given by (31).
Nevertheless the proposed homogenization approach can be easily extended to
networks of arbitrary functionality with a free energy other than the one in (31).
Firstly, one can make use of the more general form of the micro–macro relation (25)
in the case of f 6¼ 4. Secondly, the variational principle stated in this section is
universal and not limited to a particular expression of the free energy.

As concerns the particular model developed in this section, it allows for an
efficient numerical implementation by means of a unit sphere discretization and
quadrature formulas proposed in [35]. The numerical results illustrating the
performance of the proposed approach are given next in Section 5 where the non-
affine network response is examined qualitatively for two different types of fibres.

5. Predicted non-affine microdeformation of flexible and stiff networks

Within the proposed approach the elastic response of soft materials with random
microstructures is related to the relaxation of internal degrees of freedom in the
network subject to the constraint of the macroscopic deformation. The statistical
description of the fibre stretch in the network, the maximal advance path constraint
that relates it to the local deformation gradient of the material, and the principle of
the averaged free energy that finally constitutes the equilibrium microdeformation
are most generally presented in the previous sections. For tetrafunctional networks
composed of fibres that only respond to the axial straining the tensorial constraint
(30) and the identity (34) for the stretch and force vectors of the fibres at equilibrium,
as well as the expression for the homogenized mechanical stress (40) are derived.
The presented results are so far obtained for fibres of arbitrary nature, the only
assumption taken about their free energy  f is that it can be expressed as a convex,
continuous and differentiable function of the stretch vector jjj. In this section two
particular cases corresponding to two qualitatively different types of fibres are
examined in more detail.

The distinction is made with respect to the absolute value of the stretch at which
the minimum of the fibre free energy is attained. Some flexible fibres have the free
energy with a minimum at zero end-to-end distance. The response of such fibres is
primarily entropic and their zero stretch corresponds to the most probable
configuration. Such behaviour is typical of flexible polymer chains with the
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persistence length much smaller than the length of the chain between the adjacent
junctions [32]. In the opposite case the fibres are stiff and have the minimal free
energy at non-zero elongation. Such response is displayed either by semiflexible
biopolymer molecules or by stiff mechanical filaments and corresponds to the limit
when the persistence length is comparable or much larger than the fibre dimensions
[36]. The network response differs qualitatively for the two considered cases, which
altogether cover a broad class of materials [6]. Therefore, the investigation given
below is of high relevance.

The main subjects that this examination addresses are the existence and
uniqueness of the equilibrium microstretch as the solution to the constrained
minimization problem (32) as well as the stability of the homogenized material.
Furthermore, the peculiar properties of the non-affine networks predicted by the
proposed model are discussed based on their correspondence with experimentally
observed phenomena.

5.1. MAPC predicted non-affine deformation in networks of flexible chains

A free energy with the minimum at zero end-to-end distance is predicted for flexible
chains by several models of highest importance for polymer mechanics. Though
being a result of idealization, it applies to many real polymer molecules that
constitute natural and synthetic elastomers and biogels. With a certain degree of
approximation such molecules are viewed as chains of segments that are either freely
connected or rotating around the bonds, or, alternatively, can change their
orientation relative to the adjacent segments for an enthalpic cost that is small
compared to kBT. The latter quantity given in terms of kB, the Boltzmann’s constant,
and T, the temperature, is the characteristic kinetic energy of thermal fluctuations.
The response to the change of the end-to-end distance R¼ jRj produced by such
chains is mainly entropic and is in particular described by the Gaussian chain [37,38],
the non-Gaussian freely rotating chain [14] and the worm-like chain [39] models
developed within the framework of statistical mechanics. These three mentioned
models are summarized in Table 2, which contains the particular expressions for
their free energy, and their chain force is plotted qualitatively in Figure 3.

In this subsection the microdeformation of networks made of such flexible chains
is examined within the proposed homogenization approach. The uniqueness of the
equilibrium microstretch is in general proved for this case. It is furthermore shown
that the resulting homogenized network stress is stable at finite strains in the case of
material incompressibility. The two particular above-mentioned chain models,
namely the linear Gaussian chain and the nonlinear Langevin chain, are considered
in detail. It is shown for the latter case that the microstretch in the network becomes
substantially non-affine as chains approach their limiting extensibility. This effect
explains qualitatively the character of stress stiffening observed in elastomers at
uniaxial and biaxial tension.

To begin with the proof of uniqueness, note first that the models of flexible
thermally fluctuating chains in common predict a free energy that is always a
monotone convex function of the end-to-end distance jRj or equivalently the stretch
jjj as well as the positive entropic force that increases with straining starting with a
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zero value at the zero separation of the chain ends (see Figure 3). This implies that

the chain energy as the function of the stretch vector  f (j)¼ f (jjj) is strictly convex

in IR3, i.e. for any j1, j22 IR
3 and any �2 [0, 1]

 f ðjjjÞ �  f ð�jj1j þ ð1� �Þjj2jÞ � � f ðjj1jÞ þ ð1� �Þ f ðjj2jÞ, ð42Þ

where j¼ �j1þ (1� �)j2. As long as the energy of a single fibre is convex in j the

network total energy Cnet or equivalently the network average h fi minimized in (32)

are also convex with respect to the distribution of stretch in terms of the variable

function j(j0): S0 � IR3. Taking into account that the minimized network energy is

bounded below by zero and is continuous in j as well as the linearity of the maximal

advance path constraint, the solution of the constrained minimization problem (32)

exists and is unique unless the objective Cnet[j] is undefined in the whole constraint

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8

9

10

R/L [-]

n
o
rm

a
li
ze

d
fr

ee
en

er
g
y

Gaussian

FRC

WLC

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8

9

10

R /L [-]

n
o
rm

a
li
ze

d
th

er
m

o
d
y
n
a
m

ic
fo

rc
e

Gaussian

FRC

WLC

Figure 3. The qualitative plots of the free energy (on the left) and the force (on the right) of a
flexible chain according to the Gaussian approximation, the freely rotating chain (FRC) and
the worm-like chain (WLC) models. The latter two incorporate finite extensibility and display
infinite chain stiffening as the end-to-end distance R approaches the limiting value.

Table 2. Flexible chain models.

Model Free energy  f Thermodynamic force Ff

Gaussian chaina
3

2
kBT

R2

Nb2
3kBT

R

Nb2

Freely rotating chaina,b NkBT
�
�rL

�1ð�rÞ þ ln
L
�1
ð�rÞ

sinhL�1ð�rÞ

�
kBT

1

b
L�1ð�rÞ

Worm-like chainc
kBT

4lp

R2

L

h
2þ

1

1� R=L

i kBT

4lp

h
4
R

L
þ

1

ð1� R=LÞ2
� 1

i

Notes: aN is the number of chain segments, b is the Kuhn segment length.
b�r¼R/L is the relative stretch with L¼Nb being the contour length of the chain, L�1 is the
inverse to the Langevin function L(�)¼ coth(�)� 1/(�).
cGiven is the approximation of [40] valid in the limit lp�L where lp is the persistence length of
the worm-like chain and L is its contour length.
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subspace. This may occur at high macroscopic deformations in networks with

infinitely stiffening chains when the network can not deform without violating the

limiting extensibility of the filaments. As long as this scenario is avoided, the

deformation gradient F belongs to the admissible set F that can be shown to be

convex and the network responds to it with the equilibrium microstretch j*(F).
Together with the relaxed microdeformation j*(F) the homogenized network free

energy (35) is as well defined as a function of the macroscopic strain C	netðF Þ for all
F2F. Furthermore it will be strictly convex in F in the whole domain F. Indeed,

consider two different deformation gradients F1,F2 2F and their linear combination

F ¼ �F1 þ ð1� �ÞF2 2F with �2 [0, 1]. Let j	1 and j	2 be the equilibrium

microdeformations for F1 and F2, respectively, then their linear combination

j ¼ �j	1 þ ð1� �Þj
	
2 will satisfy the linear micro–macro relation for F.

Correspondingly, the network energy Cnet[j] at this microdeformation will be

greater or equal than the minimum C	netðF Þ ¼ Cnet½j
	
ðF Þ�. On the other hand, due to

(42) it will not exceed the linear combination of Cnet½j
	
1� and Cnet½j

	
2�. As a result, the

inequality

C	netðF Þ � Cnet½j� � �C	netðF1Þ þ ð1� �ÞC	netðF2Þ ð43Þ

will always hold. The homogenized network free energy, which is convex in F as

obtained for the considered type of fibre response, does not appropriately constitute

the elastic behaviour of a solid. The so far considered networks of flexible chains will

collapse into a point, since their energy is minimal at zero fibre stretch. In reality the

steric repulsions between chains as well as their interaction with the solvent

molecules in the case of swelling will counterbalance this tendency so that the

material attains a certain finite equilibrium volume [6]. One way to account for this

effect is to add a repulsive term to the free energy of single fibres as in [23,24] which

shifts the equilibrium stretch of an unloaded fibre to the non-zero value and

corresponds to the case considered in the next Subsection 5.2. In reality, the

volumetric forces are essentially intramolecular and should not be referred to single

fibres and therefore be represented in forms other than (31). To not get beyond the

scope of this work, these intramolecular interactions are assumed to have no effect

on the network mechanics. They can be associated phenomenologically with the

essential incompressibility of the material and introduced by the additional term

Cvol(J), where J¼detF, accounting for the volumetric deformation in the total free

energy of the material given as

CðF Þ ¼ CvolðJÞ þC	netðF Þ: ð44Þ

Such an additive split is commonly adopted for hyperelastic materials. The bulk

energy Cvol represents a steep convex potential well at the minimum J¼ 1 since the

steric forces have usually a much greater magnitude compared to the response of

flexible chains. These forces are then responsible for the hydrostatic stress

contribution resulting from negligible small volume changes. It should be noted

that the homogenized free energy given by (44) is a polyconvex function of the

deformation gradient, since Cvol(J) is convex in J and C	netðF Þ is convex in F, and

hence constitutes a stable elastic solid [41].
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Consider now in particular the case of a network with Gaussian chains. As long

as the initial end-to-end distance of the chains is equal to the most probable value

R0¼
ffiffiffiffi
N
p

b, which is a common assumption [20,22], the free energy can be expressed

as  f ¼
3
2 kBTjjj

2. The axial stretch conjugate chain force ff¼ 3kBTjjj is then linear in

jjj, which allows one to solve (34) for the equilibrium stretch vector as

3kBTjj
	
j
j	

jj	j
¼ lj0 , j	 ¼

m

3kBT
j0: ð45Þ

One can see that this microstretch results from an affine transformation of the initial

orientations j0 by the map m/3kBT which can only satisfy the constraint (30) if

hj	 � j0i ¼
1

3

m

3kBT
¼

1

3
F ,

m

3kBT
¼ F: ð46Þ

Correspondingly, j	 ¼ �k ¼ F j0, which implies that the network of Gaussian chains

will always deform affinely with the macroscopic strain.
The chain stretch will only redistribute non-affinely if the chain response is

substantially non-linear. To illustrate this, the networks composed of non-Gaussian

freely rotating chains that possess this property are considered next. For this case the

solution to the constrained minimization problem (32) can not be derived in closed

form. Therefore the equilibrium network microstretch j and the homogenized stress

P are found numerically. Examined are three model networks with chain sizes N¼ 4,

16, 64 and corresponding limiting stretch values �lim¼
ffiffiffiffi
N
p
¼ 2, 4, 8. Although the

situation of a chain length being equal to only four statistical segments is not well

described by the inverse Langevin approximation and is rarely found in real

elastomer networks, it is considered here for an illustrative purpose. The proposed

model predicts the response of these networks in an essentially different way as the

full affine network models [15,28].
Due to the internal relaxation of the microdeformation accounted by the

maximal advance path constraint, the non-affine network behaves softer. One can

conclude this by the elastic stresses that are produced by the affine and non-affine

networks and compared in Figure 4. The nominal stresses are computed taking

account of material incompressibility at isochoric uniaxial and equibiaxial tension

for the three considered networks. It can be noticed that for the same chain

parameters the affine network stiffens at significantly lower strains than the non-

affine one. The affinely deformed chains reach the extensibility limit as soon as at

least one of the principal stretches approaches �lim. As a result, in both the uniaxial

and the equibiaxial tension, the stress goes to infinity when �x gets close to 2, 4, 8

depending on the chain length. The non-affine networks predicted by the proposed

approach do behave differently. Once the chains that are aligned closely to the

direction of tension become highly extended, the stretch in the network is

redistributed so that the already highly stretched chains experience lower stretch

by means of straining and reorientation of the other chains, which results in a

decreasing network total energy.
This redistribution is illustrated in Figures 5 and 6. The former displays the

evolution of the maximal absolute stretch value �max
¼max{jj(j0)j, j02S0} in the

three examined networks with the macroscopic deformation for both types of
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loading. It can be clearly seen that �max is smaller than the principal stretch �x and
reaches the extensibility limit �lim depicted by dotted horizontal lines for the
considered chain lengths N¼ 4, 16, 64 at much higher macroscopic deformations,
compared to the affine case. The difference of the stretch at which the affine and the
non-affine networks stiffen is significant and is nearly as much as 50% in the case of
uniaxial loading. Due to the stretch redistribution the network of chains with
limiting extensibility �lim¼ 8 can attain elongation �x up to 11.72. In the case of the
equibiaxial deformation the difference is not that profound but still present.

This can be further examined by the example of another model network with
chains of length N¼ 9 and extensibility limit �lim¼ 3. The distribution of the
microstretch j of this network at two different macroscopic strains is shown in
Figure 6. At both deformations the maximal absolute stretch is close to the limit of 3.
However at the uniaxial tension the network is stretched up to �x¼ 4, which is much
larger than the stretch of �x¼ �y¼ 3.5, and the network can undergo equibiaxial
tension. When the material is strained in two directions the network paths oriented
closely to the plane of the biaxial strain also have to be axially strained due to the
reasoning given in Section 3. This imposes much stronger kinematic constraints on
the microstretch of the fibres compared to the uniaxial case for which only a
relatively small fraction of paths aligned with the principle direction are significantly
extended. As a result there is less freedom for the stretch redistribution and it
deviates less from the affine distribution, which evidently can be seen in Figure 6.
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Figure 4. Mechanical stresses predicted by the proposed model (MAPC) and the full affine
network model (FANM) for uniaxial tension (top row) and equibiaxial tension (bottom row)
of a model incompressible material with unit modulus �¼ nkBT¼ 1, network functionality
f¼ 4 in the MAPC model, and three different values of chain extensibility limit

ffiffiffiffi
N
p
¼ 2, 4, 8.

The proposed non-affine network response is softer and results in different limiting stretches in
uniaxial and equibiaxial loading which is not the case for the affine model.

Philosophical Magazine 19

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
St

ut
tg

ar
t]

, [
C

hr
is

tia
n 

L
in

de
r]

 a
t 0

5:
52

 3
0 

A
pr

il 
20

12
 



2 4 6 8 10 12
1

2

3

4

5

6

7

8

Figure 5. Variation of the maximal absolute value of the microstretch �max with the increase
of the macroscopic strain in the uniaxial and equibiaxial tension predicted by the MAPC
model for three networks of functionality f¼ 4 composed of chains with different values of
extensibility limit

ffiffiffiffi
N
p
¼ 2, 4, 8 represented by dotted horizontal lines. When �max approaches

this limit the network stiffens as shown in Figure 4.

Figure 6. Non-affine microstretch j* predicted by the MAPC model (filled circles) in a
network of chains with extensibility limit

ffiffiffiffi
N
p
¼ 3 compared to the affine stretch �k (empty

circles) for uniaxial tension with �x¼ 4 (top row) and equibiaxial tension with �x¼ �y¼ 3.5
(bottom row). The plotted dots display the end points of the fibre stretch vectors in x� y and
z� y plane projections. The fibres have the initial discrete orientations corresponding to the
quadrature formula [35] used for the numerical solution.
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5.2. MAPC predicted non-affine deformation in networks of stiff filaments

In this subsection networks comprised of stiff filaments are considered. These

filaments attain a minimum of free energy at an end-to-end distance which is non-

zero. Correspondingly, such fibres can support both tensile and compressive axial

loadings which is in contrast to the flexible chains considered in the previous

Subsection 5.1 which only produce positive thermodynamic forces. This behaviour is

typical for mechanical microscopic fibres that constitute paper and various non-

woven materials [6]. Semiflexible biopolymers also belong to the category of stiff

filaments. Their mixed entropic/enthalpic response is characterized by an essential

anisotropy with respect to tension and compression. The mechanics of semiflexible

polymer strands is described by numerous models mainly based on the Kratky–

Porod chain representation [39,42–46]. A particular model for semiflexible filaments

suggested in [36] and the linear elastic spring model are used for the network

simulations presented in this subsection and are briefly summarized in Table 3.

The change of free energy and the predicted axial force due to extension of these two

models are shown in Figure 7.
What is expected in such a situation is that the three-dimensional networks of the

initially undeformed fibres display a stable rigidity with respect to all types of

deformation including compression, tension and shear, at least when they are small.

A more detailed examination of the networks composed of fibres that only resist to

axial straining indicates that their rigidity depends on the network geometry and, in

particular, the functionality. Maxwell counting of the degrees of freedom owned by

the network junctions and the constraints introduced by the fibres shows that the

minimal functionality required for the rigidity is six [12,13,47]. The networks of

functionality f¼ 4 chosen to illustrate the homogenization approach proposed in this

work are therefore unstable, unless reinforced by the elasticity mechanisms

supplementary to the axial straining of fibres. In particular instant mechanical

bending of filaments may be addressed in this respect as an important factor

sustaining the rigidity of the floppy tetrafunctional networks [8,48,49]. The bending

is not incorporated into the presented homogenization approach in this work. The

non-affine relaxed network microdeformation predicted by the MAPC model can be

viewed therefore as an approximation in the limit when the contribution of the

stabilizing bending forces is small compared to the axial straining of the fibres.
The non-affine stretch redistribution in the case of stiff tetrafunctional networks

is generally shown to be qualitatively different to that of the flexible fibre networks.

As illustrated in Figure 7, the free energy  f of stiff fibres is not a convex function of

the stretch vector j2 IR3 anymore, although it may be convex in jjj as for the linear
spring. In particular, the energy is non-convex when the fibres are in contraction

jjj5 1 and hence exert negative forces. As a consequence the network will not

display a stable behaviour at arbitrary macroscopic strains in contrast to the

situation considered in the previous Subsection 5.1. The networks lose stability in a

specific manner, namely, fibres only reorient with no axial deformation. Within the

statistical description this peculiar microdeformation is defined by a stretch vector

that has unit length for all orientations j0, namely

jjðj0Þj ¼ 1 8 j0 2S0: ð47Þ
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In such a state the network attains the minimal possible total energy and produces no

mechanical stress, since all the fibre forces are zero. The macroscopic deformations

from a set �F � SOð3Þ at which this yield response is observed can be specifically

characterized.
Consider an arbitrary unit microstretch (47) that occurs at some macroscopic

deformation with the deformation gradient F. The latter can be polar decomposed as

F¼VR, where R is the rotational part of the deformation, and V¼ diag[�x, �y, �z] is
the stretch part. The maximal advance path constraint (30) gives then the following

identity for the macroscopic stretch

hj� Rj0i ¼
1

3
V: ð48Þ
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Figure 7. Free energy (on the left) and thermodynamic force (on the right) scaled by the
stiffness @2 f/@R

2 at R¼R0 of a linear spring and a semiflexible filament. The latter type of
fibres demonstrate anisotropy of the response with respect to tension and compression as well
as infinite stiffening when strained up to the full contour length.

Table 3. Stiff filament models.

Model Free energy  f Thermodynamic force Ff

Linear springa
1

2
	
ðR� R0Þ

2

R0
	
R� R0

R0

Semiflexible chainb kBT
�2lp
2L

�
1�

R2

L2

�
þ
2kBTL

�lp

�
1�

R2

L2

��1
kBT

R

L2

4L

�lp

�
1�

R2

L2

��2
�
�2lp
L

� �

Notes: aR0 is the initial length of a fibre, 	 is the axial stiffness; for an elastic bar R0¼L is the
length of the bar, 	¼EA, where E is the elastic modulus and A is the cross-sectional area.
bIn [36] a force to extension relation in terms of the filament contour length L and the
persistence length lp¼{/kBT is suggested; { is the bending stiffness; the filament end-to-end
distance R0 in the unloaded state is defined by 1� (R0/L)

2
¼ 2L/(�3/2lp).
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The trace of the left-hand side (48) is equal to hj �Rj0i which does not exceed 1, since
both vectors j and Rj0 are unit. The trace of the right-hand side satisfies another
inequality, namely 1

3 trV ¼
1
3 ð�x þ �y þ �zÞ  ð�x�y�zÞ

1=3, since all the principal
stretches are positive. Combining these two observations one can finally deduce
that the network can lose stability due to the fibre reorientation if only the
macroscopic volumetric deformation is negative. That is, the deformation gradients
from �F have a Jacobian smaller than 1, i.e. J¼ detF5 1. Correspondingly, the
admissible set F contains at least all the macroscopic deformations for which J 1.

The stable response for F2F is produced by the equilibrium microscopic stretch
and can uniquely be determined by (34) as

j	 ¼ f �1f ðjlj0jÞ
lj0
jlj0j

, ð49Þ

where the inverse fibre force function f �1f is well defined and gives for positive jmj0j
an absolute value of stretch

jj	j ¼ f �1f ðjlj0jÞ4 1, ð50Þ

which is greater than 1 as can be seen in Figure 7. As a consequence, the stable
microdeformation of stiff tetrafunctional networks with no other mechanisms like
bending, which could support the rigidity, requires that all the fibres constituting it
are in tension. Once the stretch in the network approaches a unit value with the
change of macroscopic deformation, the network starts folding by means of the
abundant kinematic modes, which Maxwell counting predicts in the case of
functionality f¼ 4. The transition between the stable network deformation regime at
F2F and the floppy reorientation at F2 �F is illustrated in Figure 8. It shows
schematically the division of the deformation gradient space SO(3) into a stable and
unstable domain.

Furthermore, the two types of the microdeformation discussed above are
demonstrated for the example of uniaxial tension considering the network of linear
elastic bars with the response outlined in Table 3. When subject to isochoric uniaxial
tension F1¼ diag[1.4, 0.8452, 0.8452] this network will attain a stable equilibrium
stretch shown in the top row of Figure 9. In full accordance with (50) at the relaxed
state all fibres are elongated. In the situation when fibre forces are positive, the same
holds true for the resulting homogenized normal stresses found as P1=n	¼
diag[0.0412, 0.0180, 0.0180]. If not constrained in the direction perpendicular to the
applied axial strain, this material will tend to contract gradually in the transverse
direction, so that the stress components Pyy, Pzz vanish. This will be only achieved at
the macroscopic strain F2¼diag[1.4, 0.5979, 0.5979] at which the fibres will become
unloaded as shown in the bottom row of Figure 9. This state is at the boundary
between the two regions F and �F. Remarkably the axial stress Pxx will also vanish at

this point, which means that the network will display no resistance to the uniaxial
tension, provided it can shrink freely.

The above demonstrated specific volumetric response is investigated separately.
The nearly 50% shrinking predicted by the MAPC model for the network of
elastic fibres is not typical, for most materials show a volumetric expansion when
axially strained. The affine network models do not capture this specific shrinkage
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effect. The same network as considered above but deformed affinely produces at the
isochoric macroscopic strain F1 the homogenized stress Paffine=n	¼ diag[0.0723,
�0.0123, �0.0123] which is negative in the transverse direction, in which the fibres
will be compressed. Correspondingly, such a network will expand transversely and
the volume will increase if the material is only loaded in the axial direction.

As shown above, the maximal advance path constraint model predicts a non-
trivial non-affine deformation for networks with fibres that produce forces simply
linear in extension. One can expect an even more peculiar behaviour in the case of
semiflexible filaments which display essentially non-linear stiffening as outlined in
Figure 7. This in particular is illustrated by the following example of a model
semiflexible network subject to the macroscopic shear F¼ 1þ 
xyex� ey, where ex
and ey are two basis vectors of a Cartesian coordinate system. This deformation is
isochoric and therefore (as shown above) the equilibrium microdeformation exists
and is stable, unless the shear 
xy is too high so that the filaments reach the limiting
extensibility. The test parameter set for the semiflexible fibres described by the model
outlined in Table 3 is chosen so that the unloaded fibres have the initial end-to-end
distance close to the contour length R0¼ 0.9L. Correspondingly, the limiting stretch
value is as large as �lim¼ 1.11. The mechanical response of this network predicted by
the MAPC model and the full affine network model is presented in Figure 10 for the
two components of the Piola–Kirchhoff stress tensor, the shear stress Pxy and the
normal stress Pyy, that define the traction on the horizontal surface where the shear
deformation is applied. Just as in the case of flexible chains with limiting
extensibility, the non-affine redistribution allows the network to undergo much
larger strains. If in the affine case the fibres aligned initially at 45� with respect to the
shear direction reach the extensibility limit �lim¼ 1.11 at 
xy¼ 0.2121, the non-affine
network described by the proposed MAPC model can be sheared up to 
xy¼ 0.5 and

1

F 1

F 2

J >1

J = 1

Figure 8. Schematic representation of the deformation gradient space SO(3) and its partition
into the domain F for which networks display a stable equilibrium response and the domain �F
where the networks lose stability by fibre reorientation together with the isochoric
deformation F1 from F and the deformation F2 with negative volumetric change located on
the boundary between �F and F.
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beyond. The microstretch in the network at this macroscopic deformation is shown
in Figure 11. The fibres at this equilibrium state of the network are all in tension.
The magnitude of fibre stretch, remarkably, displays very small variations from
jj*j ¼ 1.0443 to jj*j ¼ 1.0603 that can hardly be seen in the figure, unlike the affine
deformation for which the stretch alters from compression j�kj ¼ 0:7906 to tension
j�kj ¼ 1:2748.

Finally, two other interesting features of the non-affine network, which are not
related to the stiffening of the considered semiflexible filaments and concern the
response at small and moderate deformations, are investigated. Firstly, the
magnitude of the value for the normal stress Pyy appears to be higher than the
value of the shear stress Pxy. Neither the affine network, in particular, nor
conventional solid materials, in general, display such a behaviour at an applied shear
deformation. Recent experimental investigations of biopolymer gels report though a
similar atypical normal stress response of the magnitudes that substantially exceed

Figure 9. Illustration of the two types of microdeformation in stiff tetrafunctional networks of
linear springs predicted by the MAPC model. The stable equilibrium microstretch of the
network attained at isochoric uniaxial strain F1 (top row) and the acquisition of unit stretch in
the network with the loss of rigidity after the shrinkage in the transverse direction at strain F2

(bottom row). The same graphical representation of the microstretch as in Figure 6 is used.
The unit dashed circle is plotted to assist the identification of elongated fibres in the first case
and reoriented fibres with the unit stretch in the second case.
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the values of the shear stress [50,51]. The non-affine redistribution of filament stretch
in the network gives an adequate qualitative explanation of this phenomenon. The
second feature of the response predicted by the MAPC is the scaling of the stresses
with small values of shear strain. For conventional materials the shear stress displays
a linear proportionality Pxy � 
xy when 
xy is close to zero, whereas the normal
stress scales with the square of shear Pyy � 


2
xy. This regularity is also valid for the

homogenized response of the affine network (see Figure 10). The non-affine network,
on the contrary, produces mechanical stresses that scale as Pxy � 


3
xy and Pyy � 


2
xy,

which again demonstrates that the shear stress response is softer than the normal
stress. The network displays zero stiffness in the initial undeformed state when all the
fibres are not stretched and, therefore, does not resist to shear at 
xy¼ 0.

MAPC FANM
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Figure 10. Dimensionless mechanical stresses of network made of semiflexible filaments
predicted by the MAPC model (on the left) and the full affine network model (on the right) for
macroscopic shear with 
xy¼ 0.5. The shear stress Pxy and the normal stress Pyy are scaled by
the characteristic modulus �¼ nkBT.

Figure 11. Microstretch at an applied shear deformation in a network made of semiflexible
filaments. The same graphical representation of the microstretch as in Figure 6 is used. The
unit dashed circled is plotted to demonstrate that all the fibres are elongated as stated in (50)
for the stable equilibrium microdeformation.
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6. Conclusion

This work explores the mechanics of materials with random network microstruc-
tures. It presents a new kinematic constraint relating the microscopic deformation of

fibres to the macroscopic strain of the continuous solid that results in an efficient

homogenization of the elastic response produced by these soft materials. This
relation is established with the help of a special statistical description of the network

microdeformation that provides extensive information about the reorientation and

axial straining of the fibres. The design of the constraint is based on kinematics of
maximal advance paths, which allows for a robust transition from the microscopic

scales of the network to macroscopic scales of the deformed material. The maximal
advance path constraint imposes restrictions not on the stretch of a single fibre but

on the microdeformation of the network as a whole. Furthermore it includes

important topological characteristics of the network like the functionality of the
junctions. Remarkably, for the case of tetrafunctional networks the constraint takes

a compact tensorial form which can be clearly interpreted. It is shown that the exact

distribution of the variable microscopic stretch defined by this network model can be
determined by the principle of minimum averaged free energy, which ultimately leads

to the derivation of the homogenized elastic response of the relaxed network at

equilibrium. The predicted equilibrium microstretch is non-trivially distributed and
depends on the particular response of the chains. The qualitative difference of the

microdeformation and the homogenized stress response is shown for tetrafunctional

networks with two different types of fibres, namely, flexible chains and stiff
filaments.

In the former case, the networks are shown to undergo an essential non-affine

deformation when their fibres approach their finite extensibility. This gives a
consistent explanation for the difference in the stiffening of elastomers at uniaxial

and equibiaxial extension which is well known since the first publication of the

experimental data for vulcanized rubber in [19]. In this respect the model supports
the justification of other non-affine models like the 8-chain model [22] and the non-

affine microsphere model [20] which both suggest a redistribution of chain stretch in

the polymer networks. Moreover, in agreement with the latter model this non-affine
deformation is associated with the relaxation of the network by the internal degrees

of freedom.
A very peculiar behaviour is also predicted for networks composed of stiff

filaments. The microscopic stretch is shown to be non-affine not only at larger

macroscopic strains when the fibres get highly elongated but also at small strains.

Furthermore, one can identify a specific soft regime in which the network deforms
solely by reorientation without axial straining of the stiff fibres and therefore

produces no mechanical response. The transition from this unstable regime to the
stable equilibrium behaviour results in a particular scaling of shear and normal

stresses obtained for simple shear loading and represents a limiting case. As argued

above, the stretch of fibres in the real semiflexible networks is stabilized by bending.
The response of stiff filaments to bending is commonly much smaller than their

response to axial straining. Nevertheless, in the situation when fibre axial forces

become zero, which is the case for the fibre reorientation in the predicted unstable
regime, bending can become the dominant mechanism of network elasticity. Instead

Philosophical Magazine 27

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
St

ut
tg

ar
t]

, [
C

hr
is

tia
n 

L
in

de
r]

 a
t 0

5:
52

 3
0 

A
pr

il 
20

12
 



of the loss of rigidity by the network in the undeformed state as demonstrated in this
work, a soft but stable elastic response of the material supported by filament bending
as reported in [9–11,21] is expected.

The presented homogenization scheme is universally applicable to the materials
with random network microstructures formed by fibres of different nature. The use
of the maximal advance path constraint is especially justified in cases when the
microscopic deformation significantly deviates from the affine stretch, for it
effectively captures on average the complex kinematics of connected fibres.
Furthermore, the proposed model provides a broad framework for future extensions.
For flexible chains, the model gives a very realistic picture of the network
microdeformation. Nevertheless, the elastic properties of real elastomers can not be
described in terms of the conformational statistics of single chains only. Thermal
fluctuations of the junction points [52,53] and interaction of chains over their length
[54–57] play an essential role and have a corresponding energetic contribution. The
incorporation of these factors into the developed description of the network
micromechanics reaches far beyond the illustrative objectives of this work and is a
subject for future extensions. For stiff filaments, the proposed maximal advance path
constraint model is valid for the stretching-dominated regime. The incorporation of
the instant bending of fibres into the proposed model will allow one to capture the
response of the stiff networks in the whole range of macroscopic deformations.

The approach proposed in this work provides two main contributions to the
mechanics of soft materials. Firstly, it constitutes a universal framework for the
development of computational models that can be utilized for the finite element
analysis. It is not overly complex and at the same time is quite flexible and suitable
for different types of networks. Secondly, the approach has an essential
micromechanical justification. As a consequence, it allows one not only to obtain
averaged mechanical properties of the material but also to explain how particularly
they originate at the microstructure level. Besides the values of the macroscopic
quantities such as mechanical stress, the resulting models are capable of predicting by
which microscopic forces and which deformed microscopic fibres it is created. This
information is crucial for the understanding of elasticity as discussed in this work, as
well as other phenomena in soft materials with random network microstructure. In
particular, the knowledge of the microstretch distribution gives the key to the failure
of such materials and its modelling in the context of the advanced finite element
techniques such as those in [58–60].
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