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Notations
Cartesian basis

A = Ai e i , A∼ = Aij e i ⊗ e j , A∼ = A
∼

= A = Aijk e i ⊗ e j ⊗ e k

tensor products

a ⊗ b = aibj e i ⊗ e j , A∼ ⊗ B∼ = AijBkl e i ⊗ e j ⊗ e k ⊗ e l

A∼ � B∼ = AikBjl e i ⊗ e j ⊗ e k ⊗ e l

contractions

A · B = AiBi , A∼ : B∼ = AijBij , A∼
...B∼ = AijkBijk

nabla operators

∇x = ,i e i , ∇X = ,I E I

u ⊗∇ = ui ,j e i ⊗ e j , σ∼ .∇ = σij ,j e i
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Mechanics of generalized continua

Principle of local action: the stress state at a point X depends on
variables defined at this point only

[Truesdell, Toupin, 1960] [Truesdell, Noll, 1965]

Continuous

Medium

local

action

nonlocal

action
nonlocal theory: integral formulation [Eringen, 1972]
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Mechanics of generalized continua

Simple material: A material is simple at the particle X if and only if its
response to deformations homogeneous in a neighborhood of X
determines uniquely its response to every deformation at X .

[Truesdell, Toupin, 1960] [Truesdell, Noll, 1965]
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(classical / Boltzmann)
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determines uniquely its response to every deformation at X .

[Truesdell, Toupin, 1960] [Truesdell, Noll, 1965]

Continuous

Medium

local

action

nonlocal

action
nonlocal theory: integral formulation [Eringen, 1972]

simple
material
F
∼

non simple
material

Cauchy continuum (1823)
(classical / Boltzmann)

medium
of order n

medium
of grade n

Cosserat (1909)
u ,R

∼

micromorphic
[Eringen, Mindlin 1964]
u ,χ

∼

second gradient
[Mindlin, 1965]
F
∼
,F
∼
⊗∇

gradient of internal
variable [Maugin, 1990]
u ,α
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Power of internal forces

• Model variables according to a first gradient theory

MODEL = { v , v ⊗∇, ṗ, ∇ṗ }
velocity v and cumulative plastic strain p are assumed to be
independent degrees of freedom

• Virtual power of internal forces of a subdomain D ⊂ B of the
body

P(i)(v ∗, ṗ∗) =

∫
D

p(i)(v ∗, ṗ∗) dV

simple stress tensor σ∼, generalized stresses a (unit MPa), b (unit

MPa.mm), microforces according to [Gurtin, 2002]

• The virtual power density of internal forces is a linear form on
the fields of virtual modeling variables

p(i) = σ∼ : (v ∗ ⊗∇) + a ṗ∗ + b ·∇ṗ∗

• The virtual power density of internal forces is invariant with respect to

superimposed rigid body motion ⇒ σ∼ is symmetric [Germain, 1973a]
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Power of contact forces

• Application of Gauss theorem to the power of internal forces∫
D

p(i) dV =

∫
∂D

v ∗ · σ∼ · n dS +

∫
∂D

ṗ∗ b · n dS

−
∫
D

v ∗ · σ∼ ·∇ dV −
∫
D

ṗ∗ (b ·∇− a) dV

The form of the previous boundary integral dictates the form
of the

• power of contact forces acting on the boundary ∂D of the
subdomain D ⊂ B

P(c)(v ∗, ṗ∗) =

∫
∂D

p(c)(v ∗, ṗ∗) dS

p(c)(v ∗, ṗ∗) = t · v ∗ + ac ṗ
∗

simple traction t (unit MPa), double traction ac (unit
MPa.mm)
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Power of forces acting at a distance

P(e)(v ∗, ṗ∗) =

∫
D

p(e)(v ∗, ṗ∗) dV

p(e)(v ∗, ṗ∗) = f · v ∗ + c∼ : (v ∗ ⊗∇) + ae ṗ
∗ + b e ·∇ṗ∗

simple body forces f (unit N.mm−3), double body forces c∼ and ae

(unit N.mm−2), triple body force b e (unit N.mm−1)

P(e)(v ∗, ṗ∗) =

∫
∂D

(
v · c∼ · n + ṗ∗b e · n

)
dS

−
∫
D

(
v ∗ · (c∼ ·∇− f ) dV + ṗ∗(b e ·∇− ae)

)
dV

Strain gradient plasticity theory 13/53



Principle of virtual power
In the static case, ∀v ∗,∀ṗ∗,∀D ⊂ B,

P(i)(v ∗, ṗ∗) = P(c)(v ∗, ṗ∗) + P(e)(v ∗, ṗ∗)

[Germain, 1973b]
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Principle of virtual power
In the static case, ∀v ∗,∀ṗ∗,∀D ⊂ B,

P(i)(v ∗, ṗ∗) = P(c)(v ∗, ṗ∗) + P(e)(v ∗, ṗ∗)

which leads to∫
∂D

v ∗ · (t − (σ∼ − c ) · n ) + ṗ∗(ac − (b − b e) · n ) dS

+

∫
D

v ∗ · ((σ∼ − c∼) ·∇ + f ) + ṗ∗((b − b e) ·∇− a + ae) dV = 0

cf. [Germain, 1973b, Forest and Sievert, 2003,
Kirchner and Steinmann, 2005, Lazar and Maugin, 2007,
Hirschberger et al., 2007]
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Balance and boundary conditions

The application of the principle of virtual power leads to the

• balance of momentum equation (static case)

(σ∼ − c∼) ·∇ + f = 0, ∀x ∈ B

• balance of generalized moment of momentum equation (static
case)

(b − b e) ·∇− a + ae = 0, ∀x ∈ B

• boundary conditions

(σ∼ − c∼) · n = t , ∀x ∈ ∂B

(b − b e) · n = ac , ∀x ∈ ∂B

Strain gradient plasticity theory 16/53
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Continuum thermodynamics

• Enhance the local balance of energy and the entropy inequality

ρε̇ = p(i) − div q + ρr , −ρ(ψ̇ + ηṪ ) + p(i) −
q

T
.∇T ≥ 0

• Decomposition of total strain

v = u̇ , ε∼ =
1

2
(u ⊗∇ + ∇⊗ u )

ε∼ = ε∼
e + ε∼

p

• Consider the constitutive functionals:

ψ = ψ̂(ε∼
e ,T , p, α,∇p), η = η̂(ε∼

e ,T , p, α,∇p)

σ∼ = σ̂∼(ε∼
e ,T , p, α,∇p)

a = â(ε∼
e ,T , p, α,∇p), b = b̂ (ε∼

e ,T , p, α,∇p)

Strain gradient plasticity theory 18/53



State laws

• Clausius–Duhem inequality (isothermal)

(σ∼−ρ
∂ψ

∂ε∼
e
) : ε̇∼

p+(a−ρ∂ψ
∂p

)ṗ+(b−ρ ∂ψ

∂∇p
)·∇ṗ+σ∼ : ε̇∼

p−ρ∂ψ
∂α

α̇ ≥ 0

• Derive the state laws [Coleman and Noll, 1963]

σ∼ = ρ
∂ψ̂

∂ε∼
e
, X = ρ

∂ψ̂

∂α
, R =

∂ψ̂

∂p
, b =

∂ψ̂

∂∇p

• Residual dissipation

Dres = σ∼ : ε̇∼
p + (a− R)ṗ − X α̇ ≥ 0
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Flow rule and evolution law

• Introduce an equivalent stress measure σeq such that

σ∼ : ε̇∼
p = σeqṗ

which defines the cumulative plastic strain rate ṗ

Dres = (σeq + a− R)ṗ − X α̇ ≥ 0

• Introduce the viscoplastic potential Ω(σeq + a− R,X ) such
that

ε̇∼
p =

∂Ω

∂(σeq + a− R)
, α̇ = −∂Ω

∂X

Ω convex with respect to the first, concave with respect to the second

variable for positive dissipation

• Rate–independent case; introduce the yield function

f (σ∼ , a,R) = σeq − R0 − R + a

where R0 is the initial yield stress

ε̇∼
p = ṗ

∂f

∂σ∼
, σeq = σ∼ :

∂f

∂σ∼Strain gradient plasticity theory 20/53



Specific constitutive equations

• Free energy function

ρψ(ε∼
e , p,∇p) =

1

2
ε∼

e : Λ
≈

: ε∼
e +

1

2
Hp2 +

1

2
∇p · A∼ ·∇p

• State laws

σ∼ = Λ
≈

: ε∼
e , R = Hp, b = A∼ ·∇p

• Balance of generalized momentum (homogeneous material)

a = div b = div (A∼ ·∇p) = A∼ : (∇⊗∇p)

• Yield function f (σ∼ ,R, a) = J2(σ∼)− R0 − Hp + a

• Consistency condition; ṗ is solution of a p.d.e.

(H +
∂f

∂σ∼
: Λ
≈

:
∂f

∂σ∼
)ṗ + A∼ : (∇⊗∇ṗ) =

∂f

∂σ∼
: Λ
≈

: ε̇∼

• Isotropic case + von Mises : Aifantis model [Aifantis, 1987]

A∼ = c21∼, σeq = R0 + Hp − c2∆p
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Confined plasticity

[Ashby, 1970]

start animate end

periodic simple shear test:
classical solution

conventional continuum plasticity predicts homogenenous plastic
deformation in the layers
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Confined plasticity

[Ashby, 1970]

start animate end

periodic shear test

Additional interface conditions associated with strain gradient
plasticity induce size–dependent non–homogenous deformation
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Laminate microstructure under shear
Unit cell of a periodic two–phase laminate l = s + h

1

2

O

s h
Aifantis material in the white (soft) phase, purely elastic gray
(hard) phase

• Form of the solution for imposed mean shear γ̄

u1 = γ̄ x2, u2(x1) = u(x1), u3 = 0

unknown periodic functions u(x1), p(x1)

• Deformation gradient and strain

[∇u ] =

 0 γ̄ 0
u,1 0 0
0 0 0

 , [
ε∼
]

=

 0 1
2(γ̄ + u,1) 0

1
2(γ̄ + u,1) 0 0

0 0 0


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Resolution of the b.v.p.
Let us consider homogeneous isotropic elasticity and no hardening
in the plastic phase for simplicity

• Equilibrium: homogeneous shear stress σ12 throughout the laminate

• Displacement in the hard phase

σ12 = µ(γ̄ + uh
,1) =⇒ uh

,1 = C , uh = Cx1 + D

• Plastic strain in the soft phase

ε̇∼
p =

3

2
ṗ

s∼
J2(σ∼)

, ε̇∼
p =

√
3

2
ṗ(e 1 ⊗ e 2 + e 2 ⊗ e 1)

from the yield condition we get

σ12 = µ(γ̄ + uh
,1) =⇒ uh

,1 = C , uh = Cx1 + D

so that the plastic strain is parabolic

p = α(x2
1 −

s2

4
)

• Continuity of plastic strain at the interface p(±s/2) = 0

Strain gradient plasticity theory 26/53



Resolution of the b.v.p.

• Displacement in the soft phase

σ12 = µ(γ̄ + us
,1 −

√
3p) =⇒ us

,1 = C +
√

3p

us = (C − α
√

3
s2

4
)x1 + α

√
3

3
x3
1

Strain gradient plasticity theory 27/53



Interface conditions

• Displacement continuity at x1 = ±s/2

us(
s

2
) = uh(

s

2
) =⇒ −

√
3α

s3

12
= D

• Displacement periodicity at x1 = −s/2 and x1 = s/2 + h

us(− s

2
) = uh(

s

2
+ h) =⇒

√
3α

s3

12
= Cl + D

• Continuity of the stress vector at x1 = ±s/2

R0 − 2cα = µ
√

3(γ̄ + C )

• The wanted constants are deduced from the previous
equations

C =
R0 −

√
3µγ̄

√
3µ+

12cl√
3s3

, D = −C
l

2
, α = − 12√

3

D

s3
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Plastic strain profile in the channel

b1/lR0

u2/lγ̄
p/γ̄

x/l

0.60.40.20-0.2

1.2

1

0.8

0.6

0.4

0.2

0

-0.2

µ (MPa) R0 (MPa) c (MPa.mm2) f l (µm) γ̄

30000 20 0.005 0.7 10 0.01

• Characteristic length: lc =
√

c/µ = 0.4 µm, leading to strong
size effects in the micron range and below
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Plastic strain profile in the channel

b1/lR0

u2/lγ̄
p/γ̄

x/l

0.60.40.20-0.2

1.2

1

0.8

0.6

0.4

0.2

0

-0.2

µ (MPa) R0 (MPa) c (MPa.mm2) f l (µm) γ̄

30000 20 0.005 0.7 10 0.01

• The higher order stress b1 = 2cα experiences a jump at the
interface s = ±s/2:

b1(
s+

2
)− b1(

s−

2
) = 0− cαs, [[b1]](

s

2
) = −cαs
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Overall size effect

• Macroscopic stress strain relation

σ12

µ
=

1

µfs2 + 4c

(√
3

3
fs2R0 + 4c γ̄

)
bilinear response depending explicitly on channel size s

• Macroscopic stress vs mean plastic strain;

p̄ =
1

l

∫ s/2

−s/2
p(x1) dx1 =⇒

√
3p̄ = f γ̄ − C (1− f )− f

σ12

µ

σ12 =
R0√

3
+

4
√

3c

f 3l2
p̄

microstructure–induced linear hardening depending on unit
cell size l

• Limit cases
? thick channels: size independent threshold σ12 = R0/

√
3

? thin films: scaling law σ12/p̄ ∼ 1/l2
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General scalar microstrain gradient plasticity

• Classical and generalized plasticity

DOF = {u , pχ} STATE = {ε∼
e , p, α, pχ, ∇pχ}

scalar plastic microstrain variable pχ

• Enhanced power of internal forces and extra balance equation

p(i) = σ∼ : ε̇∼ + a ṗχ + b .∇ ṗχ, p(c) = t .u̇ + ac ṗχ

div b − a = 0, ∀x ∈ Ω, b .n = ac , ∀x ∈ ∂Ω

Micromorphic plasticity theory 34/53



General scalar microstrain gradient plasticity

• State laws
ε∼ = ε∼

e + ε∼
p

σ∼ = ρ
∂ψ

∂ε∼
e
, R = ρ

∂ψ

∂p
, X = ρ

∂ψ

∂α

a = ρ
∂ψ

∂pχ
+ av , b = ρ

∂ψ

∂∇pχ

• Evolution laws Dres = σ∼ : ε̇∼
p + (av − R)ṗ − X α̇ ≥ 0

ε̇∼
p = λ̇

∂f

∂σ∼
, ṗ = −λ̇ ∂f

∂R
, α̇ = −λ̇ ∂f

∂X

[Forest, 2009]
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Explicit constitutive equations

• Quadratic free energy potential

ρψ(ε∼
e , p, pχ,∇pχ) =

1

2
ε∼

e : Λ
≈

: ε∼
e+

1

2
Hp2+

1

2
Hχ(p−pχ)2+

1

2
∇pχ.A∼.∇pχ

[Forest, 2009, Dimitrijevic and Hackl, 2011]

• Constitutive equations

σ∼ = Λ
≈

: ε∼
e , a = −Hχ(p−pχ), b = A∼ .∇pχ, R = (H+Hχ)p−Hχpχ

• Substitution of constitutive into extra balance equations

pχ −
1

Hχ
div (A∼ .∇pχ) = p

• Homogeneous and isotropic materials A∼ = A1∼

pχ −
A

Hχ
∆pχ = p, b.c. b · n = A∇pχ.n = ac

same p.d.e. as in the implicit gradient–enhanced
elastoplasticity with ac = 0 [Engelen et al., 2003]
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Link to Aifantis strain gradient plasticity

• Yield function
f (σ∼ ,R) = σeq − R0 − R

• Hardening law

R =
∂ψ

∂p
= (H + Hχ)p − Hχpχ

• Under plastic loading

σeq = R0 + Hpχ − A(1 +
H

Hχ
)∆pχ

compare with Aifantis model [Aifantis, 1987]

σeq = R0 + R(p)− c2∆p

The equivalence is obtained for Hχ = ∞ (internal constraint):

pχ ' p, A = c2
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Consistency condition

• Consistency condition

ḟ =
∂f

∂σ∼
: σ̇∼ + +

∂f

∂R
Ṙ

=
∂σeq

∂σ
: Λ
≈

: (ε̇∼− ε̇∼
p)− ∂R

∂p
ṗ − ∂R

∂pχ
ṗχ = 0

• Plastic multiplier

ṗ =

N∼ : Λ
≈

: ε̇∼−
∂R

∂pχ
ṗχ

N∼ : Λ
≈

: N∼ +
∂R

∂p

, with N∼ =
∂σeq

∂σ∼

where ε̇∼ and ṗχ are controllable variable.

• Even though the yield condition can be written as a partial differential
equation, there is no need for a variational formulation of the consistency
condition contrary to [Mühlhaus and Aifantis, 1991, Liebe et al., 2001].
There is no need for a plastic front tracking technique. The plastic
microstrain pχ and the generalized traction b .n are continuous across the
elastic/plastic domain.
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Thermal effects

• For temperature dependent parameters

a = div b = div (A∇pχ) = A∆pχ +
∂A

∂T
∇T .∇pχ

pχ −
A

Hχ
∆pχ −

1

Hχ

∂A

∂T
∇T .∇pχ = p

• Consistency condition

ṗ =

N∼ : Λ
≈

: (ε̇∼− ε̇∼
th)− ∂R

∂pχ
ṗχ −

∂R

∂T
Ṫ

N∼ : Λ
≈

: N∼ +
∂R

∂p
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Laminate microstructure under shear
Unit cell of a periodic two–phase laminate l = s + h

1

2

O

s h
Micromorphic material in the white (soft) phase, purely elastic
micromorphic gray (hard) phase

• Form of the solution for impose mean shear γ̄

u1 = γ̄ x2, u2(x1) = u(x1), u3 = 0

unknown periodic functions u(x1), p(x1), pχ(x1)

• Deformation gradient and strain

[∇u ] =

 0 γ̄ 0
u,1 0 0
0 0 0

 , [
ε∼
]

=

 0 1
2(γ̄ + u,1) 0

1
2(γ̄ + u,1) 0 0

0 0 0


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Resolution of the b.v.p.
Let us consider homogeneous isotropic elasticity, homogeneous Hχ

and no hardening in the plastic phase for simplicity

• The shear stress is uniform throughout the laminate and takes
the value

√
3σ12 = R0 + R = R0 + Hχ(p − pχ) = R0 − Apχ,11

• Derivation of the previous equations with respect to x1 shows
that pχ,111 = 0 which leads to the parabolic profile of the
micro–plastic deformation in the soft phase

pχ(x) = αx2 + β, ∀|x | ≤ s

2

Note that √
3σ12 = R0 − 2Aα

• The parabolic plastic strain profile follows

p = αx2 + β − 2A

Hχ
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Resolution of the b.v.p.

A new feature of the model is that the microplastic strain pχ does
not vanish in general in the hard phase, whereas p does:

pχ −
Ah

Hχ
∆pχ = 0

ph
χ = αh coshωh(x −

l

2
),

s

2
≤ x ≤ s

2
+ h, with ω2

h =
Hχ

Ah

the ph
χ profile is of hyperbolic nature
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Interface conditions

• Continuity of micro–plastic deformation at x = s/2:

α
s2

4
+ β = αh coshωh

h

2

• Continuity of the generalized stress component b1:

Aαs = −Ahαhωh sinhωh
h

2
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Interface conditions
The displacement in the plastic and elastic phases can be expressed as

us = α
x3

√
3

+

„√
3β − γ̄ +

R0√
3µ
− 2Aα(

1√
3µ

+

√
3

Hχ
)

«
x

uh =

„
1√
3µ

(R0 − 2Aα)− γ̄
«

x + C

They are used to exploit two additional interface conditions

• Continuity of the displacement at x = s/2:
us(s/2) = uh(s/2)

α
s3

8
√

3µ
+
√

3(β − 2Aα

Hχ
)
s

2
= C

• Periodicity of the displacement component
us(−s/2) = uh(s/2 + h)

−(
σ12

µ
− γ̄)l +

√
3(β +

2Aα

Hχ
)
s

2
− α

s3

8
√

3
= C
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Plastic strain profiles in the channel

b1/lR0

u2/lγ̄
p/γ̄

pχ/γ̄

x/l

0.60.40.20-0.2

1.2

1

0.8

0.6

0.4

0.2

0

-0.2

µ (MPa) R0 (MPa) Hχ (MPa) A (MPa.mm2) f l (µm) γ̄

30000 20 50000 0.005 0.7 10 0.01
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Overall size effect

The scaling law results from the expression of the overall stress σ12

as a function of the mean plastic strain over the unit cell:

p̄ =
1

l

∫ s
2

− s
2

(αx2 + β − 2Aα

Hχ
) dx = βf

(
1− 1

L2

(
s2

12
− 2A

Hχ

))

with L2 =
s2

4
+

A

Ah

s

ωh
cotanh(ωh

h

2
) = −β

α
. The uniform stress

component can now be expressed as a function of the volume
fraction f of the soft phase and of the unit cell size l :

√
3σ12 = R0 +

2A

f

p̄

f 2l2

6
+

2A

Hχ
+

A

Ah

fl

ωh
cotanh (ωh

h

2
)

displaying a size–dependent overall linear hardening
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Scaling laws
Two limit cases naturally arise

• Internal constraint Hχ →∞ for which the strain gradient
plasticity model is retrieved

• Unit cell size l → 0 leads to saturation stress
√

3σ12 − R0 ∼ Hχ
1− f

f
p̄

micromorphic model
Aifantis model

l (mm)

σ 1
2
−

R
0/
√

3
(M

Pa
)

1010.10.010.0010.00011e-051e-06

1e+10

1e+08

1e+06

10000

100

1

0.01

0.0001

1e-06
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Main comments

• The choice of quadratic potentials with respect to strain
gradients leads to the existence of a size dependent overall
linear hardening modulus in a laminate microstructure

• The corresponding scaling law according to Aifantis strain
gradient plasticity (one new material parameter) is 1/l2

• In contrast the micromorphic model (two new material
parameters) leads to a saturation at nano–scales

• Physical metallurgy hints rather at scaling laws of the Orowan
(1/l) or Hall-Petch (1/

√
l) types
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Needed improvements

• Improve constitutive equations; for instance

ρψ(∇p) =
√

∇p · A∼ ·∇p

[Conti and Ortiz, 2005, Okumura et al., 2007]

• Add higher order dissipative parts
[Forest, 2009, Anand et al., 2012]

• Enhance interface conditions
[Gurtin and Needleman, 2005, Acharya, 2007,
Gurtin and Anand, 2008]
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Extension to crystal plasticity
• In crystal plasticity, the relevant variable is not the gradient of the

cumulative plastic strain but rather the dislocation density tensor

Γ∼ = −curlH∼
p, H∼ = u ⊗∇ = H∼

e + H∼
p

[Cermelli and Gurtin, 2001, Svendsen, 2002]
but no effects in laminates...

• A strain gradient and a micromorphic theory can be designed based on
the introduction of the dislocation density tensor in the free energy
function [Aslan et al., 2011]

• Similar effects arise in laminate microstructures but the overall linear
hardening is of kinematic nature

x = curl curlH∼
p : m ⊗ n

[Cordero et al., 2010, Cottura et al., 2012]

• Hall–Petch related size effects can be predicted in polycrystals based on
full field simulations
[Forest et al., 2000, Bayley et al., 2007, Neff et al., 2009,
Bargmann et al., 2010, Cordero et al., 2012,
Wulfinghoff and Boehlke, 2012]

• Constitutive equations are still unrealistic...
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