Home | deutsch  | Legals | Sitemap | KIT
Chair for Continuum Mechanics
ITM-KM

Prof. Thomas Böhlke
Karlsruhe Institute of Technology (KIT)
Kaiserstraße 10
Geb. 10.23, 3. OG
76131 Karlsruhe
Germany

Postal address:
P.O.Box 6980
76049 Karlsruhe
Germany

Office:
Mrs. Helga Betsarkis
Fon: (0721) 608-46107
Mrs. Ute Schlumberger-Maas
Fon: (0721) 608-43796
Fax: (0721) 608-44187

Continuum Mechanics in Engineering Mechanics


The Chair for Continuum Mechanics in Engineering Mechanics develops methods for the continuum mechanical modeling and simulation of the materials behavior of applied materials with consideration of the microstructure and special deformation mechanisms. The research comprises both a fundamental and application oriented description of the materials. Methodical emphasis is given to the mathematical modeling within the frame of non-linear continuum mechanics, application of homogenization methods, the scientific numerics (e.g., FEM), and material identification based on experiments.

... to the top

Research Emphases

 

 

  • FE-based multiscale methods
  • Homogenization of elastic, brittle-elastic, visco-plastic and visco-elastic material properties
  • Mathematical description of microstructures
  • Localization and failure mechanisms


    ... to the top

Studies and Lectures

The teachings of Continuum Mechanics emphasize on basic lectures in Engineering Mechanics I / II as well as on distinct compulsory optional courses and elective courses in the bachelor and master studies. The courses in Engineering Mechanics I / II provide the necessary basic knowledge for modern continuum mechanics and discuss approximation methods in mechanics. During the collateral lab course, the students use actual mathematical software for the dimensioning of components.

The theoretically, respectively numerically oriented lectures of the major focus on actual methods in the research areas of the theories of elasticity and plasticity as well as on micromechanics and numerical mechanics. We, additionally, offer an experimental laboratory course covering basic experiments with modern composites as well as a variety of bachelor and master thesis, many of which with industrial cooperations.

We offer the following lectures:‎

Winter Term

  • Technische Mechanik I
  • Engineering Mechanics I
  • Advanced course of strength of materials (with computational exercises)
  • Mathematical methods in strength of materials
  • Characterization and modeling of microstructure
  • Computational Mechanics I (with computational exercises)
  • Simulation in the product development process
  • Process simulation in material forming
  • Research seminar on continuum mechanics and homogenization methods

Sommer Term

  • Technische Mechanik II
  • Engineering Mechanics II
  • Workshop within the frame of the lecture 'working methods in mechanical engineering"
  • Introduction to the finite element method (with computational exercises)
  • Mathematical methods in structural mechanics
  • Computational Mechanics II (with computational exercises)
  • Nonlinear Continuum Mechanics
  • Experimental methods of mechanics (practical course)
  • Research seminar on continuum mechanics and homogenization methods

 


The Bachelor-Studies focus on

  • Strength of materials and continuum mechanics

 
The Master-Studies focus on

  • Mechanics and applied mathematics
  • Theoretical and experimental mechanics

 

 

 

... to the top

 

Research objectives

  • Mechanische und thermomechanische Charakterisierung von metallischen Werkstoffe
  • Mechanische und thermo-viskoelastische Charakterisierung von Polymerwerkstoffen (rein und im Verbund)
  • Charakterisierung anisotropen Materialverhaltens unter mehrachsigen Belastungen
  • Entwicklung und Validierung numerisch effizienter Mehrskalen- und Homogenisierungsmethoden

Equipment

Spezielle Messtechnik

- Trocken- und Wärmeschrank (Binder)
- Präzisionswaage (Kern)
- Exsikkator (Sicco)
- Optische Dehnungsmessung mittels DIC (Aramis 3D 4M (GOM)) (am Biaxialprüfstand)
  (2D sehr gut, in der dritten Richtung nur ungenau, da nicht von Starrkörperbewegung
  unterscheidbar)

 

Prüfmöglichkeiten

  • Elektromechanische Biaxial-Prüfmaschine mit 4 seperaten gesteuerten Prüfachsen ‎‎(Zwick)
    ‎- Maximalkraft 150 KN
    ‎- Traversengeschwindigkeit 0,0005 bis 900mm/min
    ‎- Maximaler Verfahrweg pro Achse 700mm
    ‎- Integrale optische Dehnungsmessung mittels VideoExtens (Zwick)
    ‎- Lokale optische Dehnungsmessung mittels ARAMIS 3D 4M (GOM)‎

    Bisher untersuchte Materialien:
    Sheet Moulding Compounds (SMC), metallische Werkstoffe (z.B. Dualphasenstahl)
     
  • Dynamisch-Mechanische Thermoanalyse (DMA), EPLEXOR® 500 N (GABO)
    ‎ - Temperaturbereich: -150 bis 500 °C,‎
    ‎ - Belastungsfrequenzbereich: 0,01-100 Hz‎
    ‎ - max. statische Last: 1500 N
    ‎ - max. dynamische Last: 500

    Bisher untersuchte Materialien:
    Polypropylen, Vinylester, ungesättigtes Polyester-Polyurethan Hybrid Harz (jeweils als reines Matrixmaterial und faserverstärkt)
     
  • Lokales Computernetzwerk mit Anbindung an Vektor- und mehrere Parallelrechner sowie an Computercluster des Scientific Computing Center (SSCK) des KIT - Karlsruher Institut für Technologie - im Rahmen des Höchstleistungsrechner-Kompetenzzentrums Baden-Württemberg (hkz-bw)


    ... nach oben

Service, cooperation and further training

 

  • Consultation regarding problems of computational mechanics, micromechanics and material modeling
  • Cooperation: International cooperations with industry and research institutes
  • Seminars on methods of homogenization and micromechanics


... to the top