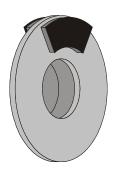


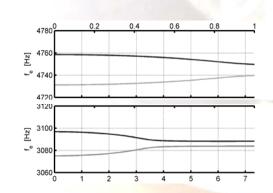
Reibungserregte Schwingungen

dissipative und gyroskopische Einflüsse auf "Flatter"-Instabilitäten bei Scheibenbremsen

Institut für **Technische Mechanik**

Dipl.-Ing. H. Hetzler, Prof. Dr.-Ing. W. Seemann





WWW.KIT.EDU

Gliederung

- Einleitung
- Modellbildung
- bewegte elastische Körper in raumfesten Koordinaten
- Linearisierung der Reibung
- analytisches Modell

Stabilität

- Einfluß von Dämpfung und Führungsbewegungen
- Instabilitätsszenarien
- Einfluß der Modellierung

Zusammenfassung

Einleitung

Bremsenquietschen

- Komfort- und Qualitätsproblem
- selbsterregte Schwingungen (2-20 kHz)
- geringen Bremsdrücken
- niedrige mäßige Geschwindigkeiten

für Modellbildung

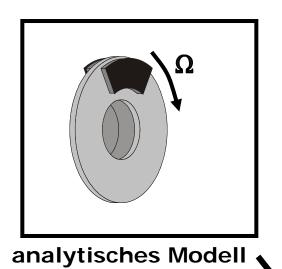
- raumfeste Schwingungsmuster
- Bremsbeläge / Kontaktzonen raumfest
- Bremsscheibe: bewegtes Kontinuum

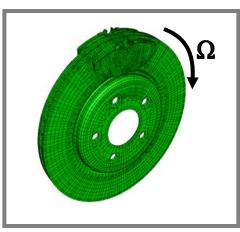
raumfeste Beschreibung

bewegter Kontinua

Modellbildung

Beschreibung bewegter Kontinua in raumfesten Koordinaten





FEM (... mit Tücken)

$$M\ddot{q} + (G_S + D_S)\dot{q} + (K_S)q = f_{Kontakt}(q,\dot{q})$$

Führungsbewegung

Steifigkeit

Strukturdämpfung

Annahme: bewegte Scheibe ungedämpft

Kontaktkräfte

$$\mathbf{f}_{Kontakt} = \mathbf{f}_R + \mathbf{f}_N$$

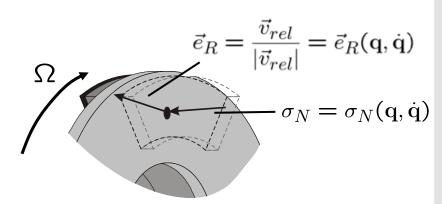
Tangentialspannungsvektor

$$\vec{\mathbf{t}}_R = \mu \sigma_N \, \vec{e}_R$$

- Richtung

- Normalspannung

$$\vec{e}_R(\mathbf{q},\dot{\mathbf{q}})$$
 $\sigma_N(\mathbf{q},\dot{\mathbf{q}})$



$$\mathbf{f}_{R,lin} = -\mathbf{R}_1 \mathbf{q} - \mathbf{R}_2 \dot{\mathbf{q}}$$

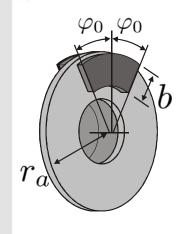
Normalkontakt (→ kinematische Nebenbedingung!)

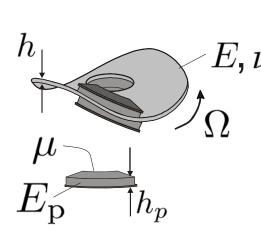
- Lagrangesche Multiplikatoren
- Penalty-Formulierungen ("Kontaktsteifigkeiten")

oder in speziellen Fällen

durch geeignete Ansatzfunktionen NB à priori erfüllen

Analytisches Modell





- rotierende Kirchhoff-Platte
- kompressible Bremsbeläge
- raumfeste Betrachtung
- Normalkontakt durch Ansätze erfüllt

Linearisierung Streichen unwichtiger Einflüsse

$$\mathbf{M}\ddot{\mathbf{q}} + \left(\Omega\mathbf{G} + d_p\mathbf{D} + p_1\frac{s_0h}{\Omega}\mathbf{D}_R\right)\dot{\mathbf{q}} + (\mathbf{K} + p_1\mathbf{N})\mathbf{q} = \mathbf{0}$$

symmetrisch M, D, D_R, K schiefsymmetrisch G, N

Parameter:

$$p_1 = \mu c_p h$$
 "Last"-Parameter

$$\Omega$$
 Drehzahl d_p Dämpfung (Belag)

$$arphi_0$$
 Belagsausdehnung s_0 statische Belagskompression

Stabilität (vereinfacht)

(intuitive) Annahme

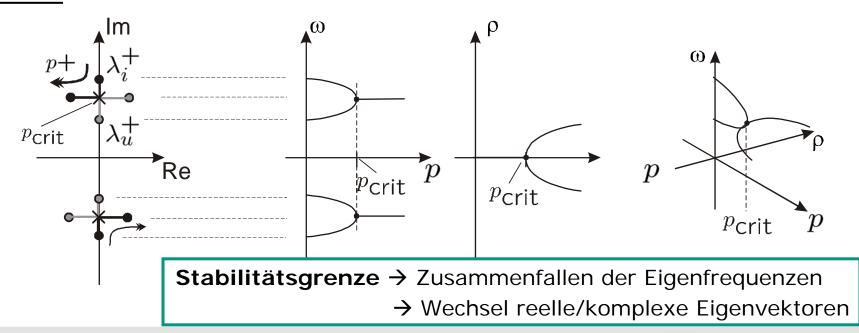
Dämpfung → asymptotische Stabilität

Gyroskopische Terme → kein Einfluß auf Stabilität

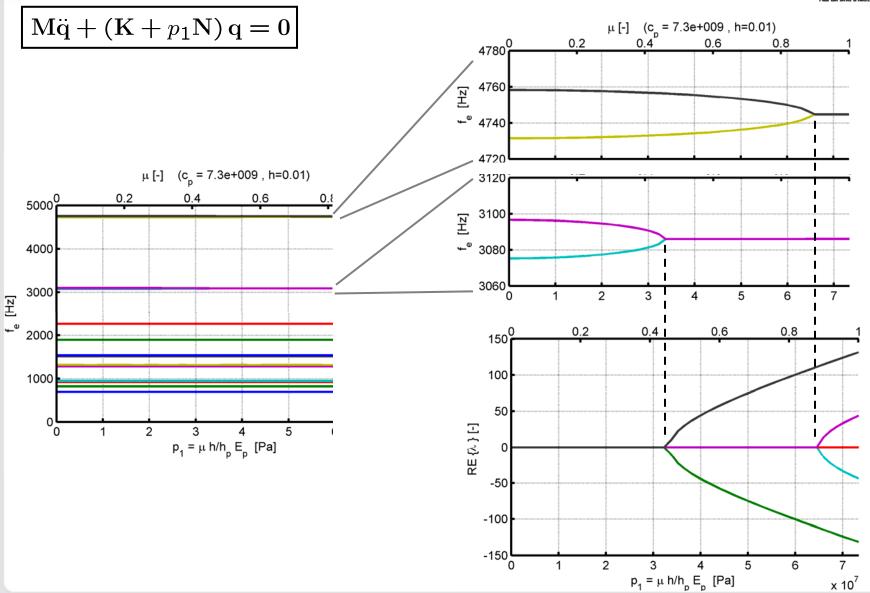
$$M\ddot{q} + \left(\Omega G + dD + p_1 \frac{s_0 h}{\Omega} D_R\right) \dot{q} + (K + p_1 N) q = 0 \longrightarrow M\ddot{q} + (K + p_1 N) q = 0$$

Zirkulatorisches System → Flatter-Instabilität

Szenario



Eigenwerte (vereinfacht)



Anmerkung

Hypothese: "Dämpfung und gyroskopische Anteile verschlechtern das Stabilitätsverhalten nicht."

$$\mathbf{M}\ddot{\mathbf{q}} + \left(\Omega \mathbf{G} + d\mathbf{B} + p_1 \frac{s_0 h}{\Omega} \mathbf{D}_R\right) \dot{\mathbf{q}} + (\mathbf{K} + p_1 \mathbf{N}) \mathbf{q} = 0$$

Abschätzung "zur sicheren Seite"

Hintergrund ist vermutlich

Satz von Thomson / Tait:

"Ein stabiles M-K-System wird durch Hinzufügen von D>0 und G nicht destabilisiert."

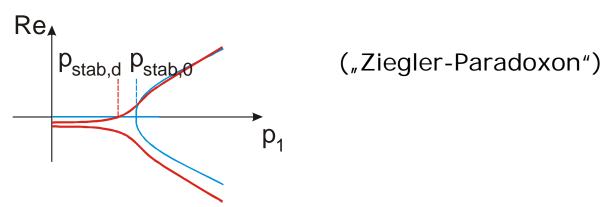
$$\mathbf{M}\ddot{\mathbf{q}} + \left(\Omega\mathbf{G} + d\mathbf{D} + p_1 \frac{s_0 h}{\Omega} \mathbf{D}_R\right) \dot{\mathbf{q}} + (\mathbf{K} + p_1 \mathbf{N}) \mathbf{q} = 0$$

Anmerkung

der Satz von Thomson/Tait gilt NICHT für M-K-N – Systeme !

statt dessen:

- Destabilisierung durch (echte) Dämpfung möglich



- M-G-K-N - Systeme immer instabil

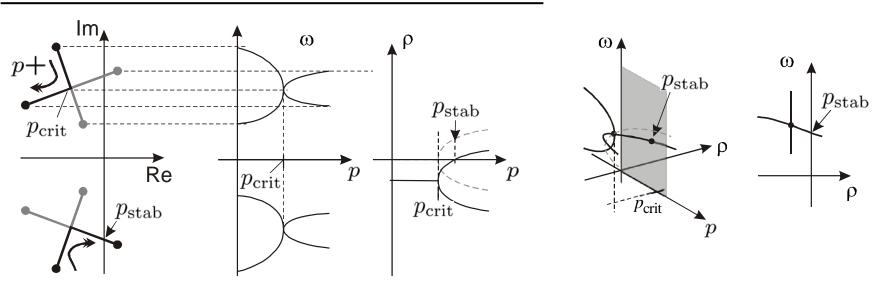
Stabilität für M-D-G-K-N – Systeme deutlich von D, G beeinflußt!

Vollständiges Modell

$$\mathbf{M}\ddot{\mathbf{q}} + \left(\Omega\mathbf{G} + d\mathbf{D} + p_1 \frac{s_0 h}{\Omega} \mathbf{D}_R\right) \dot{\mathbf{q}} + (\mathbf{K} + p_1 \mathbf{N}) \mathbf{q} = \mathbf{0}$$

 $\left[\mathbf{M}\lambda^2 + \mathbf{P}\lambda + \mathbf{Q} \right] \mathbf{r} = 0$

Szenario I: alle Eigenvektoren ${f r}$ sind reell



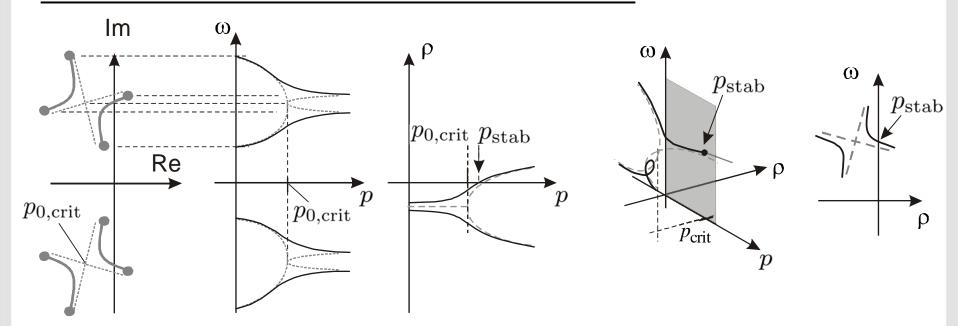
Bedingung: $M^{-1}P$ und $M^{-1}Q$ kommutieren.

"akademischer" **Spezialfall**

Vollständiges Modell

$$\mathbf{M}\ddot{\mathbf{q}} + \left(\Omega\mathbf{G} + d\mathbf{D} + p_1 \frac{s_0 h}{\Omega} \mathbf{D}_R\right) \dot{\mathbf{q}} + (\mathbf{K} + p_1 \mathbf{N}) \mathbf{q} = \mathbf{0}$$

Szenario II: Eigenvektoren nur komplex darstellbar

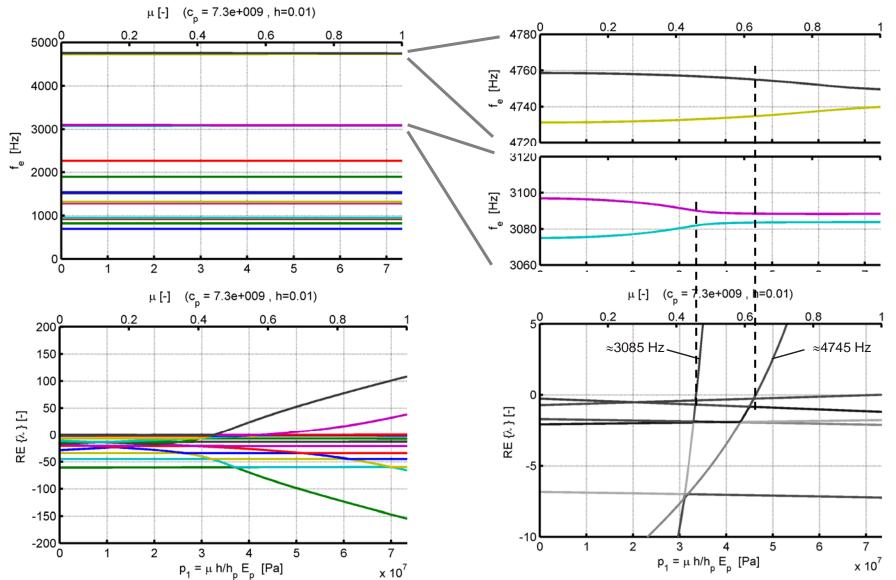


NORMALFALL reibungsinduzierter Flatter-Instabilitäten



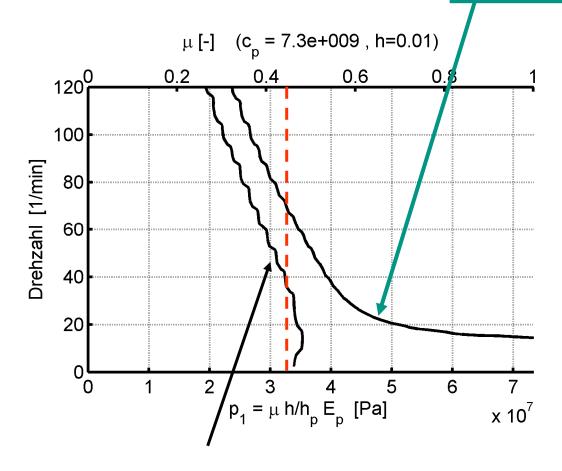
- immer komplexe Eigenvektoren
- Stabilitätsgrenze nicht mehr so akzentuiert

Eigenwerte



Reibungslinearisierung

$$\mathbf{M}\ddot{\mathbf{q}} + \left(\Omega\mathbf{G} + d\mathbf{D} + p_1 \frac{s_0 h}{\Omega} \mathbf{D}_R\right) \dot{\mathbf{q}} + (\mathbf{K} + p_1 \mathbf{N}) \mathbf{q} = \mathbf{0}$$

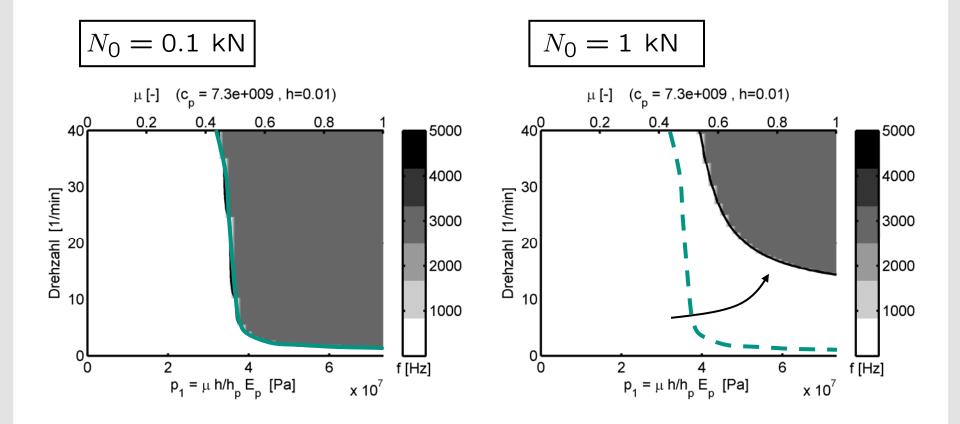


Stabilitätsgrenze M-K-N - System

Reibung nur auf Lageebene

Einfluß der Normalkraft

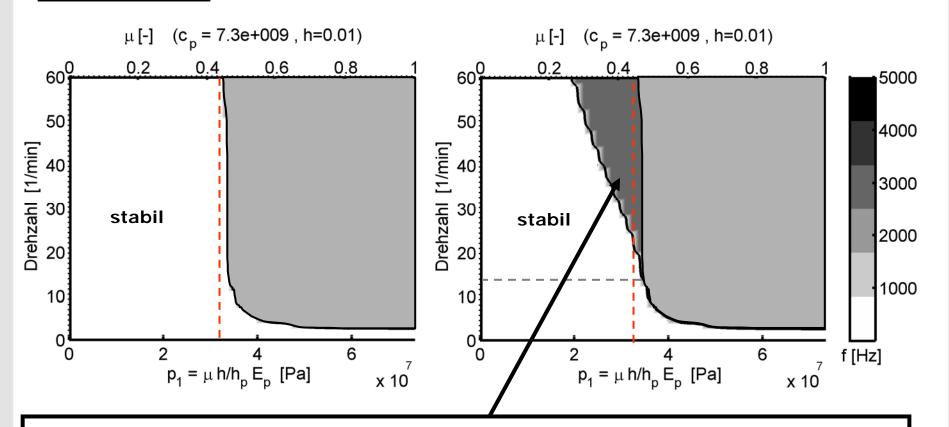
vollständig:
$$\mathbf{M}\ddot{\mathbf{q}} + \left(\Omega\mathbf{G} + d\mathbf{D} + p_1 \frac{s_0 h}{\Omega} \mathbf{D}_R\right) \dot{\mathbf{q}} + (\mathbf{K} + p_1 \mathbf{N}) \mathbf{q} = 0$$



Einfluß gyroskopische Effekte

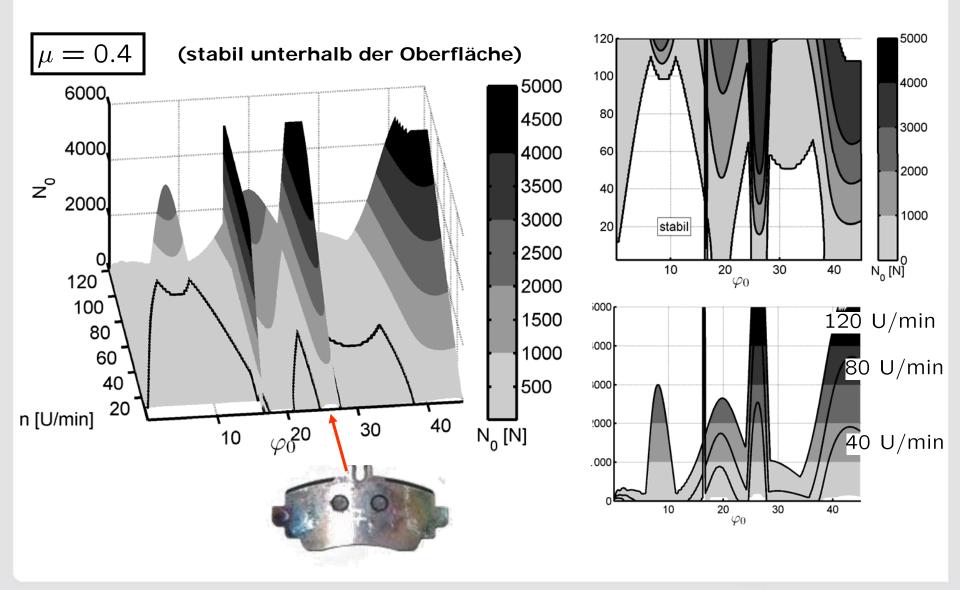
vollständig:
$$\mathbf{M}\ddot{\mathbf{q}} + \left(\Omega \mathbf{G} + d\mathbf{D} + p_1 \frac{s_0 h}{\Omega} \mathbf{D}_R\right) \dot{\mathbf{q}} + (\mathbf{K} + p_1 \mathbf{N}) \mathbf{q} = \mathbf{0}$$

$$N_0 = 0.1 \, \rm kN$$



gyroskopische Einflüsse (bewegtes Kontinuum in raumf. Koordinaten)

Einfluß weiterer Parameter



Zusammenfassung

- grundsätzliche Struktur der Gleichungssysteme
- relevante Systemparameter: $p_1 = \mu c_p h$ (dominant! Produkt!) Ω , φ_0 , N_0 , d_p
- Satz von Thomson-Tait gilt nicht
- Instabilitätsszenarien
- Einfluß der Modellierung auf die Stabilitätsuntersuchung
 - Führungsbewegung, Dämpfung,
 - vollständige Linearisierung der Reibung

müssen berücksichtigt

Vielen Dank!

Backup-Folien

