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Kurzfassung 
Bremsengeräusche – allen voran das Quietschen – stellen nach wie vor ein Problem dar. 

Trotz detaillierter Modellierung ist die Diskrepanz zwischen Simulation und experimentellen 

Ergebnissen mitunter groß, so dass seitens der Simulation offensichtlich grundsätzliche 

Zusammenhänge nach wie vor nicht verstanden sind. In diesem Beitrag wird die prinzipielle 

Form der Bewegungsgleichungen von Systemen bewegter elastischer Körper mit Reibung 

angegeben und gezeigt, dass Führungsbewegungen gyroskopische Anteile erzeugen. 

Hinsichtlich der Kontaktformulierung werden Lagrange-Multiplikatoren und ein Penalty-

Verfahren gegenübergestellt. Die Linearisierung der Reibungskräfte führt hierbei zu weiteren 

gyroskopischen und darüber hinaus zu zirkulatorischen Einflüssen, welche oszillatorische 

Instabilität (Flutter) bewirken können. Es zeigt sich zudem, dass gyroskopisch-zirkulatorische 

Systeme ohne Dämpfung zwingend instabil sind. Der Modellierung von Dämpfung kommt 

somit eine besondere Rolle zu. Außerdem wird kurz auf die u.U. destabilisierende Wirkung 

schwacher Dämpfung eingegangen („Ziegler Paradoxon“). 

Abstract 
Despite all efforts in the past, brake squeal is still a problem. Even detailed simulations only 

hardly allow for good predictions and the discrepancy to experiments may be considerable 

from case to case.  This paper revisits the general pattern of the equations of motion of 

moving continua and shows how transport motions provoke gyroscopic terms. Concerning 

the contact formulation, Lagrange-Multipliers and a penalty technique are compared. 

Furthermore, the linearization of the friction forces gives rise to gyroscopic and circulatory 

matrices, where the latter may cause flutter instability. Moreover, it is deduced that 

undamped gyroscopic-circulatory systems are always unstable. Hence, a thorough modelling 

of damping will be a key issue. Further, it is shown that small damping may have the 

surprising effect to destabilize a stable system (“Ziegler’s paradox”). 
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1. Introduction 
Although some problems in technical application may be modelled using rigid bodies, there 

are many problems which have to be addressed using flexible bodies.  

One of the foremost examples of such problems are friction induced vibrations like brake-

squeal, which require the consideration of the elastic properties of the contacting bodies as 

well as a thorough modelling of the contact. Today, this class of problems has been 

investigated for decades – however, simulation results still show significant differences to 

experiments from case to case. Hence, a deeper understanding of the peculiarities that come 

along with the simulation of friction induced vibrations is necessary.  

In the following, the principle form of the equations of motion of such mechanical systems will 

be derived for the example of a rotating disc which is in contact with two brake pads. Despite 

the simplicity of this small system, all important effects will be observable. In a second step, 

the arising instability szenarios are discussed.  

Although being rather general, the discussion will be orientated along standard tools and 

algorithms in structural dynamics with contacts.  

2. Systems of moving continua 

Equations of motion without contact contributions 
As an example problem, a system comprising a disc-brake rotor and two pads will be 

examined (fig. 1). The dynamics of this example system of flexible bodies may be described 

using the principle of virtual work [1], [2]. In the following, )(αB  denotes the set of material 

points of a body α  ( { }2,1,D=α ), while the set of its surface points is refered to as )(αB∂ (fig. 

1). Here, the index D  refers to the disc while the indices 2,1  refer to the upper and lower pad. 

 

Fig. 1: Members of the example system: rotor, brake pads. 

Assuming all system members to be linearly elastic bodies and the virtual work contributions 

only to originate from linear inner damping within body α  and the contact contributions in the 
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contact zone )(α
CB∂ , i.e. )()()( δδδ ααα

DC WWW += ,  the principle of virtual work in material form 

reads  
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where αr
r , αv

r , αa
r  denote the position, velocity and acceleration vectors of a material point, 

ε
rr is the  strain tensor and D

rrrr
 and K

rrrr
 are the dissipation tensor and the elasticity tensor of 

body α . Transport motions are assumed to be kinematically prescribed and hence driving 

forces do not appear in the virtual work balance.  

Beyond other advantages, choosing this principle of analytical mechanics, instead of 

applying Newton’s Law, guarantees for symmetric mass and stiffness matrices after 

discretization. As will be shown later, the symmetry properties of the system matrices may be 

used in order to judge the stability behaviour. Finally, it has to be pointed out that the 

principle of virtual work is usually used as starting point for FEM-formulations: hence, all 

following considerations directly apply on the results of FEM schemes. 

For concrete evaluation, the tensor-valued quantities have to be decomposed using some 

coordinate system. Assuming ε
rr  to be symmetric, the voigt notation  

[ ]T
121323332211 εεεεεε=e  (2) 

is used to rewrite the scalar products of dyadic tensors in equation (1) as matrix expressions: 

[ ]eee KD +→⎥⎦
⎤

⎢⎣
⎡ +⋅ Tδδ εKεDε

rr
rrrr&rr

rrvrrr . (3) 

With this notation, index notation can be avoided and all statements can comfortably be done 

in terms of matrix algebra.  

 
 

Fig. 2: Coordinate systems of the disc and a pad. 

A particle of the disc may be addressed by material (Lagrange) coordinates ( )ZR ,,Φ=X . 

Then, its spatial position, decomposed in a spatial coordinate system,  reads 
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,t)(t DDD XubXr +=),( , (4) 

where r  is the spatial position, b  is a prescribed part due to the transport motion and u  is 

the displacement field addressed by material coordinates. The corresponding velocity and 

acceleration of a fixed particle X  in the inertial frame read  
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where ( ) ( )
o

=
∂
∂
t

I
 indicates differentiation for a fixed particle ( const=X ) with respect to the 

inertial frame. However, it is still necessary to account for possible time-dependence of the 

used frame, when calculating the time derivative ( )
o  (e.g. if polar-coordinates are used). 

Since for a stationary motion the contact zones between the disc and the pads will be 

spatially invariant, it is often advantageous to describe the displacement field of the disc in 

terms of spatial Euler-coordinates ( )zr ,,ϕ=x  instead of material Lagrange-coordinates, i.e. 

),( txu = . Usually, a part of the velocity field may be interpreted as rigid body motion. With this 

notion, the angular velocity Ω  about the z -axis may be introduced, linking spatial and 

material coordinates by 

Rr =   ,   Φ+Ω= tϕ    ,   Zz = . (6) 

Thus, ), t(Xxx =  is a one-to-one mapping between the material coordinates (reference 

placement) and the spatial coordinates (to describe the current placement).  

The time derivatives of the new field variable ),( txuu =  with respect to the inertial frame read 
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(7) 

As before, the leading superscript I  indicates that time derivatives have to be calculated with 

respect to the inertial frame and the partial derivative means differentiation for const=X . 

Noting that the time-derivatives in (6) are built for fixed X , i.e. ),(),( t
t

t DD XuXu
∂
∂

=& and x , X  

instantaneously refer to the same particle, i.e. ),()),((),( t
t

t
t

t DDD xuxXuXu
∂
∂

=
∂
∂

=& , one 

finds the following notions in terms of spatial coordinates 
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)( ,tDDD xubr +=    ,    )()( ,t,t DDDD xuxubv ′Ω−+= &&       and 

)()(2)( 2 ,t,t,t DDDDD xuxuxuba ′′Ω−′Ω−+= &&&&& . 
(8) 

For small strains, the coordinate matrix Dε  of the strain tensor Dε
rr  can be determined from 

( ) ( )),(grad),(grad
2
1),(Grad),(Grad

2
1 TT tttt DDDDD xuxuXuXuε +=+=   (9) 

and finally resorting these coordinates yields the strain vector e .  

Analogously, particles of the brake pads can be addressed by their material coordinates X  

as well as by the according spatial coordinates ),( tXxx = . Since the pads are not subjected 

to any prescribed transport motion, material and spatial system read Xx = . Thus the 

kinematical quantities of the pads (corresponding to (8)) simplify to  

( ) )(2/12/1 ,txuxXr +=  , )(2/12/1 ,txuv &=     and     )(2/12/1 ,txua &&= . (10) 

Finally, the differentials and integration domains have to be rewritten to spatial coordinates. 

The differential volumes in material and spatial representation are connected by VJv dd =  

where )det(F=J  is the determinant of the deformation gradient 1uF += )grad( . For small 

strains, 1grad <<u  and hence 1)det( ≈F . In a similar way, one finds Aa dd ≈  for the surface 

differentials. Since in the sense of stability analyses stationary motions will be assumed, the 

contact domains are time invariant. Thus the corresponding contact domains in spatial 

coordinates read { })()( |)( αα
CC B∂∈=Γ XXx . 

The discretizations of the field variables in the partial differential equations arising from (1) 

can generally be done by a separation approach using spatial shape functions ( )xΦ  and 

time-dependent amplitude functions ( )tq , i.e. )()(),( T tt qxΦxu ≈ . For a body α , this reads 

ααα qΦu T≈  ,  ααα qΦu &&&& T≈   ,  αϕαα qΦu T
,≈′   ,  αϕαα qΦu && T

,≈′   ,   etc. (11) 

where { }21,D,α∈ . The corresponding strain matrices De  (cf. eq. (2)) may then be written as  

ααα qBe T≈  ,    ααα qBe && T≈  , (12) 

where the Matrix αB  contains partial spatial derivatives of the shape functions.  Discretizing 

the kinematic quantities (4)-(10) using these ansatzes, inserting them into (1) and carrying 

out the spatial volume and surface integrations eventually yields  



VDI-Tagung „Nichtlineare Schwingungen – Reibung und Kontaktmechanik 2007“ 

 

published in: VDI-Berichte 2022, S. 179 - 194, VDI Verlag, 2007 6/16 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ Ω−
+

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ Ω+
+

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

∫

∫

∫

Γ

Γ

Γ

C

C

C

a

a

a

C

C

C
DD

DDDDDD

d

d

d

22

11

2

1

2

1

*2

2

1

2

1

2

1

2

1

fΦ

fΦ

fΦ

q
q
q

K
K

MK

q
q
q

D
D

GD

q
q
q

M
M

M

&

&

&

&&

&&

&&

(13)

with the sub-matrices  

∫= vdT
αααα ρ ΦΦM   ,    ∫−= vdT

,ϕαααρ ΦΦG         ( }2,1,{D=α ) 

∫= vdT
αααα BBD D   ,  ∫= vdT

αααα BBK K   ,    ∫= vdT
,

*
ϕϕαααρ ΦΦM . 

(14) 

By integration by parts, one can readily proof the following symmetry properties 

T
αα MM =   ,  T

αα DD =   ,    T
αα GG −=   ,   T

αα KK =        and     
T**

αα MM = . (15) 

Finally, one comes up with equations of motion of the pattern 

( ) ( ) FqMKqGDqM =Ω−+Ω++ *2&&&        

               where       TMM =  , TDD = , TGG −= , TKK = , 
T** MM = , 

(16) 

which are typical for moving continua being described in spatial coordinates. It shall be 

emphasized that such equations will arise with analytical examinations using global ansatzes 

as well as with doing numerical analyses using commercial FEM packages.  

Contact contributions 
The forces on the right hand side of equation (16) arise from the discretization of the contact 

forces and can be split up in normal forces and tangential forces due to friction. Basically, the 

normal forces are constraint forces which prevent the interpenetration of the contacting 

bodies. Among others, there are two basic ways how to implement this constraint into the 

system description: the use of Lagrange multipliers or of a penalty formulation. In the 

following, it is assumed that there is only sliding friction, i.e. stiction will not occur.  

Lagrange multipliers  introduce the kinematic constraint via the work term  

∫= agW NC d)()(, xx λ   and its variation  ∫∫ += agagW NC d)(δ)(d)()(δδ , xxxx λλ  (17) 

where the gap-function )(xg  describes the distance between both contact partners and the 

lagrange multiplier )(xλ  can be identified with the normal contact stress. With the ansatzes 

jjiiijg qθqθx TT)( −=   and   ijijij ΛΨx T)( =λ  (18) 
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the contact between a body i and a body j  can be discretized and after summation over all 

contact pairs ji −  of the system, some calculation eventually yields from (17).2 

qNΛNΛq TTT
, δδδ +≈NCW      where    .const =N  (19) 

For Coulomb friction, the tangential traction vector reads texxτ )()( μλ= , where μ  is the 

coefficient of sliding friction and te is the unit vector in the direction of the friction. In general, 

this direction can only be expressed using the local relative velocity as relrelt vve /−=  and 

hence in general ),,( Ω= qqee &tt  holds. Only in very special cases (e.g. 2d-models or 

holonomically guided contact points) it will be possible, to express the direction as a function 

of the generalized position coordinates, i.e. )(qee tt = . In the following, it is assumed that the 

friction coefficient is constant and is the same in all contact areas ( const=μ ).  

a)               b)  

Fig. 3: Friction:   a)  Gap function.   b)  Normal tension and direction of the shear friction. 

Discretization of )(xλ , carrying out the spatial surface integrals and summation over all 

contact pairs ji − , yields the total virtual work of the sliding friction as  

TΛqT
, δδ μ≈TCW      where   .const =μ  ,  ),,( Ω= qqTT &  , (20) 

where the parameter dependence of T  results from ),,( Ω= qqee &tt . 

Putting all together yields the equation of motion as differential-algebraic equation 

( ) ( ) ( )

.T

*2

0qN

ΛTNqMKqGDqM

=

+=Ω−+Ω++ μ&&&  (21) 

Solving for the vector of constraint forces gives 

( )( ) ( ) ( )[ ]
.),,,(),,,( 10

*21T1T11T

qqqLqqqL
qMKMNqGDMNTNMNΛ

&&&

&

μμ
μ

Ω+Ω=
Ω−+Ω++= −−−−

 (22) 

Putting this into (21) and linearization about a stationary solution 0q  with qqq Δ+= 0  yields  

( ) ( ) 0qQMKqPGDqM =ΔΩ+Ω−+ΔΩ+Ω++Δ ),(),( *2 μμ RR &&& , (23) 

which may be written as 

0qQqPqM =ΔΩΩ+ΔΩ+Δ ),,(),( 2 μμ LL &&&  . (24) 
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Penalty-Formulations  are based on the regularization of the constraint equation of non-

interpenetration. Often, this is done by introducing the virtual work term  

∫= agkW CNC d)(
2
1 2

, x   and its variation  ∫= aggkW CNC d)(δ)(δ , xx  (25) 

with the penalty parameter Ck . Beyond its meaning in the context of the contact formulation, 

it is usually interpreted in a physical sense as “contact stiffness”. Consequently, the normal 

tension )(xNσ  in the contact is identified with )(xgkC . Discretization of )(xg  eventually yields 

for general friction (i.e. ),,( Ω= qqee &tt ) linearized perturbation equations of the form 

( ) ( ) 0qQMKqPGDqM =ΔΩ+Ω−+ΔΩ+Ω++Δ ),(~),(~ *2 μμ RCRC kk &&& , (26) 

which may be abbreviated as  

0qQqPqM =ΔΩΩ+ΔΩ+Δ ),,,(),,( 2 μμ CPCP kk &&& . (27) 

Here, it’s clear to see that the penalty parameter may have a strong influence on the 

system’s behaviour since it premultiplies all contributions arising from friction.   

3. Eigenproblem 

Small motions qΔ  of the system about a stationary solution 0q  can be written in the form 

( ) ( ) 0qNKqGDqM =Δ++Δ++Δ &&& , (28) 

where the symmetric and skewsymmetric parts of the velocity proportional terms have been 

collected in 
TDD=  and 

TGG −=  , while 
TKK=  and TNN −=  carry the corresponding 

contributions due to positional forces. Please note, that all these matrices depend on the 

problem parameters μ , Ω  and potentially on Ck . 
The exponential ansatz tλeuq =Δ  produces the general quadratic eigenvalue problem  

( ) ( )[ ] 0uNKGDM =++++ λλ2 . (29) 

Left-multiplication by the conjugate-complex transpose Tu  of the eigenvector u  gives rise to 

conjugate-complex quadratic forms of the shape Auuu T)( =R  .  

At this point, the symmetry properties of the system matrices may be of great use. It holds for 

- symmetric matrices TAA = :   R∈= AuuTR   for any  1n x C∈u    and  0>R   for  0>A  

- skewsymm. matrices TBB −= :  0T == BuuR   for any  1n x R∈u     

and for any complex multiple  uv α=  ( C∈α , 1n x C∈v ) 

  bj== BuuTR  ,  R∈b , for any 1n x C∈u  which cannot be 

turned into a real quantity by a scalar complex factor α . 
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Generally, an arbitrary eigenvalue problem like (29) has complex valued eigenvectors 
1n x C∈u , which cannot be written in a real-valued representation. It can be shown that for an 

undamped, nongyroscopic system ( )[ ] 02 =++ uNKM λ , which is marginally stable (i.e. 

0)( =ℜ λ ), one can always find a set of entirely real valued eigenvectors. Furthermore, it is 

well known that these eigenvalues will also be eigenvalues of (29) iff ( )NKM +−1  and 

( )GDM +−1  commute, i.e. if ( )[ ] ( )[ ] ( )[ ] ( )[ ]GDMNKMNKMGDM ++=++ −−−− 1111  holds. Only in 

this case (29) will have a full set of real eigenvectors.  

With 1!T == Muum  (mass normalized), DuuT=d , KuuT=k , DuuT=d GuuT=jg , NuuT=jn  

(29) yields 

( ) ( ) 02 =++++ jnkjgd λλ , (30) 

which is a quadratic equation for the eigenvalues  

( )ndgjdgkjgd 424
2
1

2
22 −++−−±

+
−=±λ  . (31) 

Evaluation of the square-root is easily done by recasting the radicand in exponential form as 

)arg(2,,e 222 zbarrjbaz j =+==+= ϕϕ            ϕjrz e±=
± . (32) 

Hence, the square root of a complex number produces two phasors (vectors in the complex 

plane), which have the length r  and the angles ϕ  and πϕ +  to the real axis (cf. figure 4). 

 
Fig. 4: Illustration of square roots of complex numbers. 

Sometimes, the following notion of orthogonality of eigenvectors is used: using real quadratic 

forms, two eigenvectors 1u , 2u  are called orthogonal with respect to a matrix A  if 

0Auu =2
T

1  holds. For the undamped, non-gyroscopic system one can show that  
( ) 2

T
12

T
121 2 NuuMuu −=− λλ  (33) 

holds for the eigenpairs { }11,uλ , { }22,uλ . Obviously, for different eigenvalues the 

corresponding eigenvectors are only orthogonal with respect to M  if N  vanishes or in 

particular cases if one of the vectors lies in the nullspace of N . 
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4. Stability 
Despite its simple structure, equation (29) does not allow for an easy assessment of the real 

part of the system’s eigenvalues – and hence the stability of the system. Introducing 

ωρλ j+=  into equation (30), separation of real and imaginary part and finally applying the 

Routh-Hurwitz-criterion yields the necessary and sufficient conditions for asymptotic stability   

00 22 >−+∧> nndgkdd   . (34) 

For 0D =  or )ker(Du∈ , thus 0=d , the system (or at least the mode corresponding to u ) can 

only be marginally stable, which cannot be checked by the Routh-Hurwitz-criterion. However,  

ωρλ j+=  yields the relations 

( ) 02,022 =++=+−− ngkg ωρωωρ , (35) 

which has to be discussed from case to case. For further details see [3], [4], [6] for instance. 

Noncirculatory systems  

The simplest example is the undamped, nongyroscopic system [ ] 02 =+ uKM λ . The 

eigenvalues read k−±=±λ , which are purely imaginary numbers if K is positive definite 

and consequently 0>k holds. Such systems are marginally stable and hence there is a 

complete set of real valued eigenvectors.  

Following the theorem of Thomson-Tait-Chetayev, adding damping D  and/or gyroscopic 

terms G will not destabilize the system, as long as D is at least positive semidefinit. If  

0T >= Duud  holds for all eigenvectors u , the system is asymptotically stable: this is the 

case if 0>D holds or if the damping is pervasive, i.e. 0T >= Duud  for all eigenvectors u  

even though 0≥D . Otherwise, motions may occur which are only marginally stable.  

The stability of systems with vanishing circulatory terms and positive definite stiffness K  is 

entirely determined by the damping D . The root loci of damped systems with and without 

gyroscopic contributions are outlined in figure 5. 

a)             b)  

Fig. 5: Root loci of noncirculatory systems:    a) undamped       b) damped. 
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Circulatory Systems  
Arbitrary systems which possess a circulatory matrix N  may exhibit further instability 

szenarios, as will be demonstrated in the following.  

Flutter instability may be seen as the standard paradigm of instability due to circulatory 

contributions. For example, such systems describe elastic systems with sliding friction, if 

transport motions (i.e. 0≈Ω  for disc-brake problems) as well as the velocity dependence of 

the friction tractions are neglected during linearization. Assume a system 

( )[ ] 02 =++ uNKM pλ , (36) 

where the load parameter p  controls the influence of the circulatory effects. It can be shown 

that if 2λ  is a solution of (36) then 2λ  will be a solution as well. According to (33) the mutual 

mass-orthogonality of the set of eigenvectors u  will be lost as p  is changed from 0. As  p  

further changes, some of the affected eigenvectors will mutually approach, i.e.  sr uu →  and 

in the limit 0→s
T
r Nuu  since ss uNu ⊥  and hence the corresponding eigenvalues approach 

as well (since 0>M ).  The point, where two eigenvalues merge to a double root and the two 

corresponding eigenvectors align, is referred to as critical point and the corresponding 

parameter critp  is denoted as critical load. By means of a vector series [1], [2] in the vicinity 

of this critical point, one can show that as p  passes through critp , the eigenvalues 

rr jωλ ±=± , ss jωλ ±=±  change from purely imaginary roots to complex values off the 

imaginary axes. Accordingly, the eigenvectors ru , su  change from real quantities to complex 

ones and hence, as p  crosses critp  the contribution n  will no longer vanish in (30),(31). For 

critpp > , 2λ  leaves the real axis and the symmetry 22
sr λλ =  results in symmetric Rayleigh 

quotients according to rssrrr kkk === KuuT  and rssrrr nnn =−== NuuT  . Hence the 

behaviour of the eigenvalues may be summarized as  

rsrss

rsrsrpp

ss

rr
jnk
jnkpp

k
kpp C

−−±=
+−±=>⎯⎯⎯ →←

−±=
−±=< ±

±=
±

±

λ
λ

λ
λ :: crit

point 
critical

crit
crit  . (37) 
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Fig. 6: Root loci of an undamped circulatory system: standard transition szenario to flutter. 

The root loci during this transition are outlined in figure 6 and 7: as p  passes through critp , 

the eigenvalues leave the imaginary axis to opposite directions and the system’s stability 

changes from marginal stability to oscillatory instability (flutter). From figure 6 one may 

deduce graphically that 0≠n  inevitably causes instability of the system. Additionally, this can 

be proofed analytically using equation (35).2, which states that 02 =+ nρω  holds and hence 

two cases can be distinguished. For real valued eigenvectors, 0=n  holds and for 0≠ω  

follows 0=ρ . However, for complex valued eigenvectors, 0≠n  and hence 0≠ρ  for 0≠ω .  

 
Fig. 7: Undamped circulatory system: path of root loci of ωρλ j+=  as p  passes critp . 

Modal velocity proportional forces: adding velocity proportional terms ( )qGD &+  to a 

circulatory system like (36), which fulfil the commutativity-condition, does not alter the 

eigenvectors of the underlying system. Hence, the transition of eigenvectors from real to 

complex ones will happen at the same critical parameter critp . Thus the eigenvalues are  

( )ndgjdgkjgdpp

dkdpp

424
2
1

2
:

4
2
1

2
:

221n x 
crit

21n x 
crit

−++−−±
+

−=∈→>

+−±−=∈→<

±

±

λ

λ

C

R

u

u
 . (38) 
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As for system (36), the eigenvectors degenerate to one single eigenvector at critpp =  and 

the considered system will have a single eigenvector to a double root as well.  

Since real valued eigenvectors exist, the contributions jg , jn  due to skew-symmetric 

matrices vanish and the stability condition (34) reads 00 2 >∧> kdd . Hence, for 0>K  the 

stability of such systems is entirely determined by the definiteness of D . Furthermore, figure 

8 shows that the stability border stabp  is no longer at the critical point, but instead critstab pp >  

holds.  

A closer look at equation (23) or (26) reveals that the matrices ),,( 2 μΩΩLP , ),,,( 2 μΩΩCP kP  

of the velocity proportional forces depend on the system parameters like Ω , μ  or the penalty 

parameter Ck . Thus, in general the commutativity conditions ( )( ) ( )( )LL PMQMQMPM 1111 −−−− =   

or ( )( ) ( )( )PP PMQMQMPM 1111 ~~ −−−− =  are only fulfilled in very special cases for very particular 

sets of parameters Ω , μ  and Ck . Hence, usually the velocity terms do not fulfil modality 

conditions and consequently systems in general will have complex valued eigenvectors.  

 
Fig. 8: Circulatory systems with modal velocity-proportional terms: path of root loci. 

General damping and gyroscopic forces terms  will cause complex valued eigenvectors. 

By means of series expansion, it is possible to show that adding non-modal velocity terms to 

a system with vanishing or only modal velocity terms, produces root loci that do not cross 

through a common critical point anymore (see figure 9). Further, the conditions for 

asymptotic stability now take the general form  

00 22 >−+∧> nndgkdd   . (39) 
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Fig. 9: Circulatory systems with non-modal velocity-proportional terms (general case). 

For such systems, two interesting effects can be deduced: 

1) Destabilization due to small damping: assume a marginally stable circulatory system 

( )[ ] 02 =++ uNKM pλ , which is near its flutter instability border (i.e. n  is not small). Now, 

adding a small portion ( )jgd +ε  ( 1<<ε ) of positive definite or at least pervasive ( 0>d ) but 

non-modal velocity proportional terms turns the real eigenvectors to complex ones and 

hence yields from (39)  

( ) 00 222 >++−∧> ndgkdnd εε   . (40) 

While (40).1 is fulfilled, condition (40).2 will surely be violated since near the flutter border n  

will be much bigger than ).( 2εO  This surprising and rather contra-intuitive effect is often 

referred to as Ziegler’s Paradox and has been extensively studied [5], [6]. 

2) Instability of undamped circulatory systems with gyroscopic contribution: assume a system 

of the form ( )[ ] 02 =+++ uNKGM pλ λ  and recall that (almost) all eigenvectors are 

necessarily complex. Hence, for such eigenvectors asymptotic stability ( 0<ρ ) is ruled out by 

condition (34) and (35) shows that for 0≠n  0≠ρ  must hold, thus the system is unstable. 

Although individual eigenvectors u  in the nullspace of G  can be real valued, thus allowing 

for marginal stability of individual vibration modes, the system is unstable since for 0G ≠  

there will be at least one eigendirection with 0>ρ . A rather academic case would be 

eigenvectors that either belong to the nullspace of G  or that of N , allowing for an entirely 

marginally stable system.  

With equation (31) and the geometric interpretation of complex roots, one may easily 

illustrate this instability szenario (cf. fig. 10). Hence, such systems are (almost sure) 

unstable. An alternative explanation basing on the characteristic polynomial is given in [7]. 
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a)    b)  

Fig. 10:  Effects in circulatory systems with velocity dependent forces:  

a) Ziegler’s Paradox   b) Instability of undamped gyroscopic circulatory systems. 

5. Analysis of practical problems  
Above findings shall be summarized in regard to the examination of practical problems. 

Although being generally valid, the following considerations will be accompanied exemplarily 

by the according commands in the software package Abaqus®. Starting with the simplest 

modelling approach, small vibrations of an elastic system without any contacts or driving 

motion, are described by  
0KqqM =+&&  (assume 0M > , 0K > ). (41) 

Superposing the transport motions (*MOTION) and accounting for the gyroscopic 

contributions (*CORIO) yields the gyroscopic system 

0KqqGqM =++ &&& . *MOTION 
*CORIO (42) 

Adding friction (*FRICTION) to the system, linearization and calculation of eigenvalues 

(*FREQUENCY , *COMPLEXFREQUENCY) yields  

( ) 0qNKKqGqM =++++ RR&&& .               *FRICTION 
*COMPLEXFREQUENCY (43) 

As stated above, the trivial solution of this equation is inevitably unstable (indicated by the 

small lightning symbol). Hence, the influence of G  (i.e. of the transport motion) may be 

critical in stability analyses. Moreover, positive-definiteness of ( )RKK +  is not sure and may 

be lost (e.g. if self-locking occurs) causing instability by divergence – but since flutter is 

commonly considered as the reason for squeal, ( ) 0>+ RKK  is assumed. Increasing the 

fidelity of the simulation by adding the velocity-proportional parts arising from the linearization 

of the friction as well (*COMPLEXFREQUENCY FRICTIONDAMPING=YES) produces 

( ) ( ) 0qNKKqGGDqM =++++++ RRRR &&& ,           FRICTIONDAMPING=YES (44) 
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which still represents a system whose trivial solution does not need to be stable, since the 

definiteness of RD  (i.e. the sign of Rd ) in general is unknown. The final step to give a 

complete model is adding the damping D  of the structure (*DAMPING for instance) 

( ) ( ) 0qNKKqGGDDqM =+++++++ RRRR &&& . *DAMPING (45) 

Only this modelling stage allows for a reasonable stability analysis, since all steps before 

were per se unstable or at least uncertain. Apparently, a reliable assessment of circulatory 

systems intrinsically demands for considering transport motion as well as structural damping. 

7. Conclusion 
Describing moving continua – as the rotor of a disc-brake for instance – in terms of spatial 

coordinates always results in gyroscopic contributions to the linearized equation of motion 

about the trivial solution. Linearization of the friction forces yields further contributions to the 

system matrices. In particular, this linearization gives rise to non-symmetric parts in the 

positional matrix, which may provoke oscillatory instability (flutter), as well as it may produce 

general nonsymmetric contributions to the velocity dependent forces.  

It is shown that the velocity-proportional forces on the system may have considerable 

influence on the stability behaviour. On the one hand, modelling gyroscopic circulatory 

systems without damping inevitably yields an unstable model – on the other hand, modelling 

of structural damping is a very difficult issue. Moreover, the importance of a realistic damping 

model is further emphasized by the effects of Ziegler’s Paradox, stating that small amounts 

of damping may cause a near-flutter system to be destabilized.  

To sum up, it can be stated that increasing the fidelity of the simulations will demand for 

thorough modelling of the velocity dependent terms, i.e. damping and gyroscopic effects. 
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