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Abstract. This contribution presents a generalized approach toifsicinduced vibrations in
systems of moving continua. To this end, Hamilton’s Priecip used to state a weak formu-
lation of the system dynamics without using specific strattaondels, like beams or plates for
instance. The normal contact is enforced by a penalty faatman, which motivates the use of
a constitutive contact model based on meso- and micromeszigmoperties.

By linearization about a stationary solution the perturibbatequations are derived in a weak
form. Since moving continua are considered, inevitablyethall be gyroscopic contributions
to the system. Special attention is paid to the derivatiod Emearization of the frictional
contributions. The resulting terms are interpreted withpest to their physical meaning, defi-
niteness and symmetry. It is shown that frictional effedecathe system'’s stiffness as well as
its damping. It is found that using this quite general apmtogome universal properties can
be formulated. Finally, by means of a Ritz-type ansatz areligation is carried out, leading
to a matrix differential equation. Due to stationarity okthonsidered solution, the differential
operators and thus the matrices are time constant.

Furthermore, a simple constitutive contact law following thssumptions of Greenwood-
Williamson is stated. It is found, that the contact stiffniesselated to the local contact pressure
as well as to statistical parameters of the surface topogyaph

Finally, above results are demonstrated using the exampke rotating Euler-Bernoulli-
ring, which is sliding through frictional guidings. Firsthé general stability of the steady state
is discussed. It is found that this steady state may becostahle due to flutter and that the
stability behaviour is extremely sensible against daming gyroscopic effects. Moreover, the
influence of tribological contact parameters as the RMS efabperity heights as well as the
contact pressure is demonstrated.
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1 INTRODUCTION

Self-excited vibrations in systems of moving elastic bediee a common phenomenon in
engineering applications. Popular examples reach froraamg vehicle brakes or clutches to
insufficiently lubricated bearings.

a)ﬁ b)@ C)ng ol)‘zg3

Figure 1: Exemplary systems from engineering applicatidiictv may show vibrations due to friction self-
excitation.

Mostly, it is found that squealing is caused by a flutter-typstability due to friction of
the steady-state, which leads to self-excited vibratiomhis instability mainly arises from
non-conservative contributions of the friction, which teaflinearization and discretization —
yield a non-symmetric stiffness matrix. In the recent desadhe knowledge about friction
induced flutter has steadily grown and was mainly promotedercontext of squealing vehicle
brakes. Here, flutter has been known as mechanism since0s [, but it was not before the
beginning of this century, that the influence of the frictmmto the system’s damping had been
revealed|[11]. Later, the importance of gyroscopic terms wuthe transport motion has been
pointed out ([1] for instance), which give rise to gyrosaspirculatory perturbation equations,
that are known to exhibit a complex stability behaviour (13 [9], [2]).

Moreover, another mechanism often associated with fnatiduced vibrations is instability
by divergence due to a negative slope of the coefficient ofiém. Although the relevance of
this mechanism to practical problems is under debate, tbaems often used to explain friction
induced vibrations [3].

Since usually the above mentioned phenomena are investigsing minimal models, it
seems interesting to carry out a general examination — witredying to special assumptions
or structural models — in order to clarify, whether there Imige further mechanisms and to
promote a more global unterstanding.

2 MODELING

In the following, the dynamics of systems of moving elastdies with frictional contacts
will be described and the perturbation equations of a stastalg solution will be derived.
Thereby, the focus will be on general properties of symmatrgt definiteness of the result-
ing differential operators.

2.1 System of moving bodies

In many engineering applications, the stationary motioaroélastic body may be decom-
posed into a prescribed rigid body motign and small motions’; about this transport motion,
i.e.™ = rp; +w; (cf. fig.[2 a). In the sense of a linearized description, theact zond - often
may be described with respect to the intermediate configurat; after the rigid body motion.

Thus, fromrp;(x,t) = 7ri(X(x,t), t) follows the identificatiork = X (x, t), which relates
the spatial coordinates= (z,y, z) " of the intermediate configuration to the corresponding ma-
terial coodinateX = (X, Y, Z)'. If the intermediate configuration and the material refeeen
coincide at = 0, spatial and material coordinates are usually related byX + fot vrdt, thus

x = X + vy, wherevy = (U1, Uy, vTZ)T. Please note that the vector fields= 7, (x, t) are
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adressed by the spatial coordinatend thus, material time derivativ@zs{X for fixed X = const
must account for the transport motion. Consequently, fdaimee, the field of material velocity
readsu, dt‘XT‘X =7+ VTadxra (a =1, 7).

a)

Figure 2: a) Kinematics of a moving deformable body with intediate configuration after the transport motion.
b) Kinematics of the contact between badynd ;.

For a system ofV bodies, evaluation of an analytical principle, like Hawrils Principle for
instance, and subtracting the steady state due to the dmsption yields a weak formulation
of the perturbation equations

ozz/m-(M[ 1+ Pyl + Q] ) do + A (A1} — A (5o} — A {51} (D)

where A{} denotes linearizationM; = M. is the mass operator of thth body andP; =

D; + vrG; contains the symmetric damping operafyr= D, as well as the skew-symmetric
gyroscopic contributiong; = —G.!. Moreover,Q; = K; + vy N; + v2K! consists of the
symmetric stiffness operatdt; = K., the symmetric centrifugal effect§; = K" and may
exhibit skew-symmetric influences; = —A/;" from internal dampingA {§W,,,} gathers the
virtual work of the remaining non-potentional forces, thave not been considered otherwise.
In particular, this addend may account for momtentum fluosetthe system border if open
systems are discussed [7].

2.2 Contact

In order to express the contributions of the conré(céff between body andj, the gap vector
g = 7; — ; is introduced, which connects a surface pointi ¢a its mating contact partner
on j. Using the decomposition of the positional field, the gapgeeeads

G = (7 — 7)) + (0; — @) = o + AF )

and thusi(Agx) = dgn holds. On each contact partner, a tangential coordinatecfraay be
defined usmg the outward surface norrﬁ}g p/0) . Using this, the normal gam(y) is given by
g\ = i) . &) and its variation readsy'?) = 55“7') .&\) . The direction of the sliding friction
tractions on body and; read

ey = &) =59 )15 where &%) =g — 7. 3)

rel rel

For the sake of brevity, the superscript) is dropped in the following and the tangential system
of bodyi is used, i.eey = é}(\;) within a contact(iy).
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Using a penalty approach, one may introduce the contachpaltél, = % frc ke (gN>2 da,
where(-) = min (0, -) are the so-called McCauley-brackets. Variation and lizesion yields

A{dnc} = 5gN kcAgN da, (4)

Ie

wherep = p(Agn) = po + ko(—Agn) = po + ke (—€x - Ag) is the linearized contact pressure

andkc = 6§§N o is the linear contact stiffness, i.e. the linearization afstitutive contact law

p = p(gy) at the working point. Thus,

nc nc

ATy = S / 5G - [k:c (€N®6_’N)]OA§’da:Z / 0G-C[Aglda, (5

(1) (i) (i) (ig)
F<C] F(CJ

whereAg = w; — w; and|...], stresses that the bracketed terms refer to the lineanizatio
point. The symmetric contact stiffne€s= C ' is semi-positive with respect to the displacement
fieldsw;, w;, since the integration only affects the contact surfaceisndt influenced by the
displacement fields within the bodies.

The sliding friction stress vectors on the contacting bsd%mdf(;‘) = upé(ﬁ) (a = 1,7),
wherett?) = —#%. Thus, the virtual work of the sliding friction betweesy readssW "7 =

Jpin 6(75 —75) - [— E(})} da = [.i» 67" [—é(;),up(gN)} da, from which Taylor expansion yields
C C
oWy == [ 67 [uap A + ncsy] o 6)
e

where it has been assumed that the coefficient of slidinggdrias constant. Witrvﬁz?o =
||v}ja—xfoj — v}m@xme being the relative velocity in the linearization point, Tayexpansion
of é(;) and ommission of higher order terms yields

o . + 0

Aé(F) ~ WAUMZ = W [Ag + V;vrj a—ij - VTZ-a—X'wZ'} . (7)

Urel,O rel,0

gN
Figure 3: a) Linearization of the direction vectgy of the friction within the contact between two bodies.

b) Example of a constitutive contact law relating contaaspurepy and distancegyy. Linearization about a
working point.
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With Ap = —kcAgn = —ke (Ex - Ag) one finally obtains

nc
5 HPo
A{—6We} = Z/(Sg-{[mﬂ

(i5) rel

Ag

0

Mpo T a - T a —

rel

(i)
r.

+

_ [ukc (Er @ Ex) ] OAg} da

nc

= > /55- {Rl [AG] + Ry [, 4;] + Rs[AF] } da, (8)
(i5) ng)

whereR, = R| is a symmetric and positive semi-definite operator, wRile~ R, , R3 # R4
are nonsymmetric.

The physical interpretation @ as contact stiffness is obvious. The operatBisand R,
stem from the changing direction of the friction stressdsilevik ; arises from the change of
contact pressure as the bodies deform.

For small values of;ffjl?o < 0 the operatofR; will become very large. However, the limit

vffejl)o = 0 is not valid since it would involve stiction, which was preded. For the second
operatorR, this may not be observed: since nominator and denominagoofathe order of
magnitude of the velocity parameters, it will not becomeaslar. In general it is found th&R,
has rather small influence on the system.

The operatofR; expresses the non-conservative influence of positione¢foon the system
and will be the reason of the flutter type instability. Pleaste, that this contribution is mainly

controlled by the contact stiffnegs,, which will be investigated below.

2.3 Finite dimensional system dynamics

Eventually, discretization of equatidd (1) in conjuctioittw(8)) leads to a system of ordinary
differential equations of the form

Mg+ (G+Ds+Dp)g+ (K+K*"+C+Ry+R3)q=0 9)
where
M, Dg, K are symmetric and positive definite, (20)
Dy, C, K* are symmetric and positive semi-definite, (11)
G is skew-symmetric and (12)
R:, R3 are non-symmetric. (13)

Here the symboD for the discretization ofR, has been chosen in order to stress the
symmetry ofDr. Hence, this problem belongs to the class of general gypisairculatory
stability problems and thus may exhibit a complicated $itgltiehaviour, including divergence
and flutter ([2], [9] for instance).

The findings are summarized in table 1.
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operator|| stems from | affects system’d contributes Matrix
R, || changing friction direction damping Dr=D}>0
R, || changing friction direction stiffness R, # R,
R, || fluctuation of contact pressurestiffness R; # RJ

Table 1: Overview on linearized frictional contributiomsthe perturbation equations.

3 CONSTITUTIVE CONTACT LAW

As has been found, the contact stiffnégsis one of the influencing parameters to the fric-
tional contributionsR3; which is the cause of the flutter instability — thus, it is resaey to
give it a physical meaning. To this end, a constitutive conkav following the basic idea of
Greenwood-Williamson is adopted [4], [10].

Assume two rough surfaces, z», where the heights of the asperities of each obey Gaussian
distribution functions with standard deviatiomsando,. Thus, the distance = 2z, — z; itself
is also a gaussian stochastic process with distributiositled(z), whose standard deviation is

given by
o =1/0o?+ 03 (14)

With this, the normalized vertical coordinate= z/o alongéy and the normalized distance
h = gy /o are introduced. The gap functigpy is interpreted as the distance of the nominal
surfaces located at the mean valaes (cf. fig.[4 a). The asperities of both surfaces are locally
approximated by spherical caps with the radii of curvatur@ndr,, which are made of ma-
terials with the Young’'s-moduliy; and E,. If Hertzian contact theory is applied to the local
behaviour of the asperities, the effective values

1 1 1 I 1- vio1—wvd

—=—+— and — = 15
K I<&1+I<J2 E FE + Es (15)

may be assigned to the resulting processhich describes the distance of the asperities.

Fy o
Fs/9

3

q)(é) /6//
o i i
]
g T

h =ogn

SIS

Figure 4: Rough surfaces: a) Geometry, kinematics andlalisiton density of the asperity heights.  b) Distribu-
tion density and? = I35/ F' 5.

The compression of an asperity of heighteadsd = s — h. Thus, applying Hertzian contact
theory to the spherical caps yields the contact pressure

P 4

b= Z = gnEV FGU3F3/2(h>7 (16)

where is the number of asperities per unit area d@hdh) = [, (s — h)"®(s)ds is a special
moment function of the distribution densiy. The density, is difficult to measure and thus is

6
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unknown in most practical applications. In order to circemtthis problem, one may formulate

1 dp iFl/z(h) 3

i = = —p0(h 17
pday I ™ 20 Fyalh) i ~ 2570 e

to describe the contact pressure in the vicinity of a workdomnt (Ko, po). Sinces only weakly
depends orh, for many applications it may be assumed thatz const around the working
point. This latter relation can readily be integrated to

p(gn) = poexp (%(Agwo : (18)

Hence, the parameters of exponential constitutive congaes (like in ABAQUS, [5]) may
easily be related to toplogical properties of the surfaceyided may be reasonably estimated,
as is the case for many applications. It shall be mentionatdsimilar results may be derived
by using exponential approximations®fwithout the need to assume Hertzian contact ([4] for
instance). However, such approaches involve the quitertaiocgoarameten, which has been
eliminated by the approach stated above.

Taylor expansion yields(gno + Agn) = po + kcAgn Where

ke = p02—5~ (19)
g

It is noted, that the linearized contact stiffness depemndte standard deviatianof the height
distribution as well as on the contact pressuy@ the linearization point.

Please note that the presented approach relies on Hertardact theory, thus assuming
linear elastic behaviour. In order to test the applicapiidr problematic cases, the plasticity
index ¥ could be used for instance (e.gl [4]).

4 EXAMPLE: rotating Euler-Bernoulli annulus sliding through Wink ler-type bedding

Above results are exemplified with the example of a rotatingeEBernoulli-ring in fric-
tional guides, cf. fig.[5 a), which may be interpreted as a Bmpodel for a vehicle disc brake.
The example comprises an annular Euler-Bernoulli beam (Rodwdius R, heighth, width

Figure 5: Example problem: rotating Euler-Bernoulli ringt) System of bodies. b) Kinematics of the ring:
material reference frame (left) and spatial frame (right).

b, densityp, bending stiffnesg/ 1) which rotates with the angular velocify about the vertical
axis. The annulus slides through two frictional pads (ibictcoefficient;, =const), that are
modelled as Winkler foundations (bodi¢sand3, heighth,, width b, densityo,, foundation
stiffnessk, spatial extent-¢, < = < ).

In a reference configuration, the material coordintes introduced, while the spatial co-
ordinatey describes the position after the rigid body motion. Thedrigpdy transport motion
relates the spatial frame to the reference framepvia & + €t.

7
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The displacement of the beam’s neutral fibre is denotedvhby, t), while w;(p,t) and
ws (g, t) refer to the displacements of the upper and lower frictiodspaurfaces. Further-
more, the superscripts™ and ()~ to w(y, t) refer to the upper and lower surface of the beam.
Thus, surface points on the friction pads have the positemtors

Fl <T7 @, Z) = Té;’ + (wlo + w1>€z = (Tv O, wlO)Ipz + (O’ 07 wl)::pz = FTI + u_jl (20)

7?3<7ﬁ7 @, Z) = Té;" + (w30 + w3)€z - <T7 07 w30);rgoz + (07 Oa w3);rgoz - FT?) + U_j3' (21)

Here, the brackets§ . . ),,,. contain the coefficients to the unit vectors but not the civares.
The position vectors of points of the neutral fibre as wellashe beam’s surfaces read

772(7", @, Z) = (Ta 07 0):4,02: + (07 07 w);l"—cpz = FT? + wQ (22)
75 (1, 2) = (1,0,0/2),. + (0, =h/QR) w', w),. = Ty + W) (23)
7y (1, 2) = (1,0, =h/2)} . + (0, +h/2R) W', w),y, = Try + 1, (24)

(cf. fig. 2 b). Please note that in order to formulate the dispinent of the beam’s surface points
Euler’'s normal hypothetis has been used. The displacenedds fivithin the friction pads are
assumed to vary linearly with, i.e.

Z — U)w)

wpi(2) = wy (1 — (T> 2 =wig...(wi+ hy) (25)

Z — W30

wps(z) = wg( - > 2= W3- .. (w30 + hy). (26)

Eventually, the dynamics of the system is described by

2w
/ dw (obh (i + 2" + Q*w”) + ETw™") dp (27)
0

®o bh
i=1,37 %0
The contact contributiona\ {51l — W} between the sliding beam (bod) and the
upper and lower pad (body, 2 resp.) are derived using the theory stated above. In or-
der to obtain equations of similar structure for both cotstait is advantageous to calculate

AW = AWS? + AW The necessary tangential systems read

body 1: &) = (0,1,0),. , & =(0,0,-1)]. (29)
body 3: & =(0,1,0),, , &V =(0,0,+1)], (30)
1 /

_» | e
T ) w1 S ol

—4 :lgg\]f) F Y%
IR G N C— -

a) —¥0 ©o b) linearization point pad beam

Figure 6: Kinematics of the system in the contact: a) Corgantp = —¢q .. . ¢, displacement fields) of the
neutral fibre andv,, wo of the friction pads’ surfaces. b) Contact between body péufriction lining) and body

2 (ring): configuration in the linearization point with Iddangential frame (left), displacement fields about the
linearization point.
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The linearized gap vectors read

Ag(u) — H+ —w; = (0,—h/(2R) w',w — wl)T

rEz

A_'(32 =Wy —ws = (0,+h/(2R)w',w — ’UJ3)T

rYz

(31)
(32)

and thus the corresponding variations régd? = §(Ag"?) = (0, —h/(2R) 6w’ , sw—bw,),,
andég®? = §(AGP?) = (0,+h/(2R) dw', bw — dws),,

Hence, inserting these quantities irftd (5) the normal airantributions of the upper con-
tact for instance yields

rez

- 0 "T/o0 0 0
A{&HQ”} - / bhc | —h/(2R) 6w’ 0 le( o —h/(2R)w'| dp (33)
%o ow — dwy -1 -1 w — Wy
®o
= / bke (0w — dw) (wy — w) dyp (34)
—%0
and from equatiori {8) one gets the virtual work of the tanigéfdrces
©o 0 ' . 0
A{(swg”} :/ —h/(2R) 5w {[’“‘pOI —h/(2R) ' (35)
_ Q ! .
o | dw — dwy w — Uy
HPo 0 - 0 -
I|Q— |—h/(2 !
o | =
0
— ke ® —h/(2R)w' }bdgp
w — Wy
o B rupo L
= / dw 4R2[Q]w+ dw — wlﬁw w1 bdp (37)
o h2 " /
+ [ 0w o] w” + S[w — wiupow” bdp (38)
—¢0
¥0 h
- 5w spHkelw —wi]upow bdp. (39)

The termsA {61187 L, A 5Wé32)} arising from the second contact on the lower surface are

derived analogously and are of similar structure. At thi;jmppahe symmetry properties of
the frictional terms turn obvious: while equatidn {37) withntribute symmetric terms to the
system’s damping, the remainirig [38) ahd| (39) are non-synmpositional contributions.

In order to allow for further interpretation the frictiongdrms the linearized upper friction
traction At* may be decomposed accordingAdt = upoAér + Eropulp + EpopoAp =
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At €, + At.€,. Thus, rearrangement ¢f (37)-(39) yields

®o h
A {5W§2>} - / Su' = A, + 8w — wi] At, bl (40)
—Po
o / h h -/ h "
- /. {‘Wﬁ o gm * 5m) —Mifc(_w:ﬂl] @
g Ap
AEfp-€,

1

+ (0w — dwy) pupo [ ﬁ(w — ) — w’} }bdg@. (42)

J/

Aé’p-@z

The first addend iri(40) is readily found to express the virak of the torqueh /2 At,,, while
the second is the virtual work of the vertical compondant (cf. fig.[1). Moreover, the first and
the last underbraced term [n(41),142) are componentspf consisting of the local derivative
together with the corresponding convective parts.

— h
At 50w’
g S
| w = :U

Figure 7: Physical interpretation of the contributionseeimg the virtual work of the friction: the tractiaf\? does
virtual work along the virtual dispIacemthSw’.

Finally, in order to discretize the weak formulation (28 thpatial fields may be approxi-
mated by a Ritz-type ansatz of the form = Zfil fri(@)ari(t) = ®rqy of order K, where the
matrices®; (x) contain spatial ansatz functions. The virtual displaceseadiw;, = iq, ®; .
Although the continuum is moving, the spatially fixed frasti pads suggest spatially fixed vi-
bration patterns; this assumption is validated by expertai@bservations. Thus, the harmonic
eigenfunctions of the non-rotating beam are chosen aszfusations, hence

qk 2n—1

:(I)qu s k,nzl,...,K. (43)
gk 2n

wg = [...cosny sinng. . .|

In general, the contact pressuyrg = po(y) in the steady state will be spatially distributed
over the contact zone. Hence, if a constitutive contact leav(#8) is used, the contact stiffness
ke = ke(po(p)) will also depend on the position. For this case, the pertiohaquations of
the steady state get

Mg + QGq + %DF(PO)Q + [K+ K" + Ky (ko) + pRs(ke) + pRa(po) a = @44)
Po = po(‘ﬂ) ) ko = k’C(po)- (45)

The frictional influence on the system produces the maix R, andR3 which stem from
R, R, andR 3 respectively (cf. eq[(8)). The coefficient of friction haselm assumed constant
over the contact.

10
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Since an analytical principle has been used and the liredaizpoint is a stable static equi-
librium, M = M andK = KT are symmetric and positive definite. The gyroscopic terms
G = -G are skew-symmetric. Moreover, as predicted addye= D}, Ky = K}, are sym-
metric and positive semi-definite alR), andR 3 are not symmetric. Usually, the entriesR§
are found to be much larger than thoséof Equation((44) is a gyroscopic-circulatory system,
which may exhibit flutter instability due to the non-symniepositional forces (e.g. [2][ [9],

[1]).

4.1 Steady-state stability

It is assumed, that the trivial solution 6f (44) belongs &b# static solution and th&t and
thus the centrifugal term8?K* are comparatively small. Moreover, in most cases curvattire
and the inclinationy’ are small and thus the influence Rf is indeed found to be negligible.
Thus, equatiori(44) simplifies to

M + QG4 + 5Dr(po)d + [K + K (ke) + iRy (ko) +] 0 (46)
po=polp) ko = ko(po). (47)

Here, the trivial solution may only get unstable due to tha-spgmmetric, non-conservative
contributionsR 3, which may lead to a flutter-type instability. Although tisghe actual reason
leading to instability, it may be strongly affected by vetgaependent terms stemming from
dissipation and transport motion.

Furthermore, since all frictional contributions dependtlo& contact parameterg andkc,
they will have a significant effect as well. The contact sffs is chosen according to equation
([@9). For instance, for typical working conditions in vekibrakess may be estimated as
g € [4/3...6/3]. Moreover, it is found by experiments that the distributafrthe asperities
may be adequately described by Gaussian distributionscdlygtandard deviations found are
Onew = 20p for new brake pads and,,., ~ 5um for worn pads[[10]. Thus, choosing an
average value of yields

5
ko ~ po—

20’ (48)

wherep, = po(¢) and thuskc may vary within the contact zone.

4.1.1 Basic mechanism of flutter instability

Due to the assumptionr® > 0 and (K + Ky) > 0 together withM > 0, divergence
instability is ruled out and thus the trivial solution maylyget unstable due to flutter, which is
produced by the non-symmetric contributions to the pas#tidorces.

In this context, it is emphasized that the Theorem of Thonsswh Tait does not apply due
to the non-symmetric stiffness matrix and thus, it is nouess that adding dissipation or gy-
roscopic terms may not destabilize the trivial solutiory(¢12] , [2], [6], [1]). Hence, inves-
tigating the simplified MKN-system in order to obtain an ewtte of the stability border is
not a valid approach — moreover, the influence of velocigpprtional contributions may al-
ter the stability border significantly, as will be demonstthbelow. However, the underlying
mechanism leading to instability is flutter.

11
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Circulatory system Although an investigation of the simplified MKN-system wnibt yield
a reliable estimate of the stability border of the full systen a first approach the undamped,
non-gyroscopic circulatory system

Mq + [K + Ky (ko) + uRs(ko)+] q 0

(49)
will be used to demonstrate the basic mechanism of fluttesmFequation[(49), it is obvious

12000

7690

N

=
™
= 7680
10000 f =
= 7670
8000 = 7682
& 5370 ‘ ‘ ‘ :
g 7681
ER S |
6000 = 5360 — 7680 :
2 5350 o ;
4000 = 0 01 02 03 04 05 = 7679
10 — ‘ < 7678 .
5] i
= 7676 I
0 -10
0 0.2 0.4 0.6 0.8 0 0.1 0.2 0.3 0.4 0.5 7675

-100 0

o 100

' b) c)

Figure 8: Eigenvalues of a circulatory system (MKN): a) limagy parts of the eigenvalues as the load parameter
u is changed. Divergence does not occur since no imaginatyaaishes. b) Imaginary parts of the first two
eigenvalues that become unstable and corresponding mesi(jmaver subfigure) as functions pf c) Eigenpaths

of the first unstable eigenvalue in the complex plane.

a) I

that the influence of the non-symmetric frictional influegis controlled by the parameter
1, Which is sometimes referred to as load parameter. Fromtiequ@9) it is clear that the
frictional contributions also depend on the contact sti as well as on the spatial extent of
the contact zone,. Please note, that the contact stiffnéssand the coefficient of friction
appear as product and thus will influence the result equalhe rotational speef? does not
influence the behaviour of the simplified equationl (49).

In order to examine the stability of the trivial solutionethnsatzy = re is used to derive
from (49) the corresponding polynomial eigenvalue problenthe eigenvalues.

Figure[8 displays the behaviour of the eigenvalues _of (43)ependence ofi: subfigure
a) displays the imaginary parts of the eigenvalues and prthat divergence does not appear
since no eigenfrequency vanishes. Part b) shows the rdal(pattom) and the imaginary parts
(eigenfrequencies) of the first two eigenvalues that beconstable. Subfigure c) shows the
behaviour of the first unstable eigenvalue in the complexglaThe shown eigenvalue be-
haviour is the typical scenario for flutter instability: agtoad parameter—i.e. the parameter
that controls the influence of the non-symmetric influenaeshe system — is varied, pairs of
eigenvalues mutually approadh (8 b). Initially being peyamaginary, they converge and after
merging at a distincti = u..;, they leave the imaginary axis into opposite halfplanesef t
complex planel(8 c), causing instability.

The non-conservative pdRt; depends on the contact stiffnégsas well as on the integration
limits g = arctan L—Pf’. Figure9 shows the stability border for varying contadfratiss for two
different pad lengthd.,,,. The strong effect ok~ emphasizes the need of either experimentally
verified values or physically sensible constitutive contaodels, relating measurable surface
properties to contact stiffness values. Furthermore ntleaseen that also the spatial extent of
the contact (described by,) has a strong effect.
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Figure 9: Stability borders of the circulatory system (MK varying coefficient of frictiony and contact
stiffnesskc, outlined for two different lengthg,, of the contact zone. Note the significant impact of the cdntac
stiffness on stability.

Full gyroscopic-circulatory system As mentioned before, it is not possible to use the sim-
plifed undamped non-gyroscopic problem to examine theilgjabThus, it is necessary to
investigate the full system. As a well known fact, velogiyeportional contributions to circula-

IM{\}

IM{\}

/Lcrit\/ \/.usta,b

.

E{A\}

RE{\}

=V

a)~ =~

Figure 10: Schematic of the eigenvalue behaviour of gersstiems with dissipation, gyroscopic effects and
circulatory contributions (MDGKN): a) Special case of "nadtvelocity proportional contributions, i.e. that

eigenvectors of the pure circulatory system (MKN) are algemvectors of the full system (MDGKN). b) General
case.

tory systems may alter the stability border drasticallypamticular it is found that the transition
scenario of the eigenvalues for changing load paramatetotally different to that of the purely
circulatory system. Here again, pairs of eigenvaluesapfiroach and two genuine scenarios
may be distinguished:

= 3450 2030
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Figure 11: Eigenvalues as function @for a small angular velocity{{ = 0.57/s): a) Imaginary parts of the first
two unstable eigenvalues and corresponding real partsigbpfath in the complex plane.
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Figure 12: Eigenvalues as function p@ffor a higher angular velocityY = 7 /s): a) Imaginary parts of the first
two unstable eigenvalues and corresponding real partsigehpgath in the complex plane.
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Figure 13: Stability border: a) Influence of different mdahgj levels on the stability. (A) - damped circulatory
system (MDKN), (B) circulatory system with frictional damng (MDKN), (C) full system (MDGKN). Obviously
the gyroscopic contributions may have a strong effect evéowaspeeds. b) Influence of the normal forEg on
the friction linings for a constant contact stiffnegg; (=const).

a)

b)

If the velocity proportional terms fulfill the conditiom$ modal "damping” —i.e. ifP =
(D + G) andQ = (K + N) are interchangeable in the sense®'Q)(M~'P) =
(M~'P)(M~'Q) — the transition scenario of the eigenvalues involves acatipoint
where two imaginary parts merge. However, this criticahpaevill in general not mark
the stability border. This case is outlined in fighré 10 a).isTdonstellation may only
occur in very special situations, since the componentd3 ahdQ stem from different
independent physical effects — friction, motion of the emmim, etc. — which change as
the corresponding parameters are varied. Thus, this cdlseniyi very unlikely occur.

In general, the velocity proportional terms will not beddal” in the sense of interchange-
ble matricesM~'P) and(M~'Q). Then also, two eigenvalues will mutually approach
— however, they will not merge. Thus, there will be no distiistped critical point and the
stability border may not be detected by only looking at thegmary part. This scenario
is outlined in figuré_I0 b). This is the general scenario arlbalvhost always be the case.

Figured 11l and 12 show the corresponding results for theiskst example problem: sub-
figures a) show imaginary and real parts of the first two eigkms that become unstable, while
subfigures b) display the eigenpaths in the complex plangolivious that the influence of the
non-modal velocity proportional contributions leads toehdwviour of the eigenvalues which is
more complex than that of the purely circulatory system.
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The influence of the gyroscopic ter@ — stemming from the transport motiéh— is shown
in figure[13 a), which displays the stability border of therapée system for different modelling
levels. The dotted line (A) denotes the stability borderhef tiruclatory system (MDKN) with
symmetric structural dampinD g, but without frictional damping and gyroscopic effects.aln
next step towards the full system, the gray line (B) outlitesstability border of the circulatory
system (MDKN) with symmetric dissipatidd s + D, comprising structural damping as well
as the dampin@ g arising from the linearized friction forces. Finally, thiatk line (C) is the
stability border of the full system (MDGKN), comprising dlissipative effects i) as well as
the gyroscopic term& due to the transport motion.

Figurd 13 b) shows the influence of the normal force on theebliakngs of the full system for
constant contact stiffnegs =const. As the normal force is increased, the presgyre Fyy /A
increases and thus the influences of the frictional dampseg r

4.1.2 Influence of contact tribology and pressure distribuibn

The previous considerations did not account for the infleeiparameters related to the tri-
bological behaviour of the contact, namely the contadingtifsk.- and the pressure distribution
Po = po(p) within the contact.

Assuming asperity heights obeying a Gaussian distributilbe contact stiffness may be
expressed by equation (48), ile; = pO% Thus, the contact stiffness depends linearly on
the local contact pressugg in the linearization point and further depends on the RMS ef th
distribution of the asperity heights.

Figure[14 displays the contact stiffness as function of the asperity heights distribution

and of the local contact pressuyrgin the linearization point.
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g .
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10

108
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VWA ‘% o ) "/WWW =

Figure 14: Contact stiffneds- for different asperity height RM& and local pressurgy.

In general, the local contact pressure will be spatiallyriisted, depending on the overall
force applied to the friction linings as well as on the elas@haviour of the structure. Thus,
the contact stiffness as well will vary over the contact arEmure[15 gives a survey on the
influence ofs andF = [ pda for two different contact pressure distributions

Fn

) p=po=const , Po=— (50)

s s
0 p=rweos (52) =G 1)
%o 2

As is clear to see, the topography parametas well as the distribution of the contact pres-
sure have a tremendous influence on the stability behaviogeneral, the.os —like pressure
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distribution 1) seems more squeal-proof than the congteessure 1), which might be due to
the fact that only a smaller region es exerted to higher press Concerning the influence of
o, no obvious rule is observable.

These results correspond to the experimental observahansquealing systems (like vehi-
cle brakes) often start squealing after a certain periodsaga, i.e. whea has been changed
by wear. Furthermore, it is known from practice that evenlbamanges in the elastic structure
or of the point of application of the lining force may change bverall acoustic behaviour.
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Figure 15: Stability charts as function of the surface tappby and contact pressure distribution.
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5 Conclusion

Using an abstract and thus general approach, the structuhe @quations of motion of
a system of moving bodies has been outlined. From this, tluetate of the perturbation
equations arising from linearization about a stationahytgm has been stated, which comprises
gyroscopic contributions due to the transport motion. &pedtention has been set on the
frictional contributions, namely on definiteness and syrmynef the corresponding differential
operators. It is emphasized that these findings have bearedevithout relying on specific
structural models (like beams, plates, ...) and thus aneetsally valid. The general findings
about frictional influences to the perturbation equaticlessammarized in tablg 1.

Moreover, a simple constitutive contact model based orhibert of Greenwood-Williamson
as well as on Hertzian contact theory is developed, whicmoovees some difficulties in de-
termining specific parameters needed in the classical G&Wahdt is found that for many
engineering problems the contact pressure is given by aonexpial function, which depends
on the RMS value of the asperity heights as parameter of tii@csutopography.

Finally, the findings are demonstrated using an exampldg@mobf a rotating Euler-Bernoulli
ring, which slides through friction pads. which may be ipteted as simple model for the ex-
amination of brake squeal. In order to clarify further fingn basic results of the theory of
general system with special emphasis on gyroscopic-eitory systems are recapitulated.

It is demonstrated that the gyroscopic contributions duthéotransport motion may have
a significant effect on the stability border even for low speeFurthermore, it is found that
the contact stiffness and thus the constitutive contactaineaf major importance for stability
assessments since it may alter the stability behaviouretnelously. The presented contact
model relates the contact stiffness to surface topographdyl@al contact pressure and it is
found, that the spatial distribution of the contact pressuay also have a strong effect on the
stability.
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Appendix: Simulation parameters

Unless subjected to variations, the parameters used irxtirepe problems (cf. fig.]5) are:
rotating ring

mean radius: R = 0.15m width: b= 0.08 m
thickness: A =0.02m
Y.-Modulus: E = 2.11-10" Pa density: p = 7.8 - 103 kg/m?
friction pads
thickness: h, = 0.01 m length: L, =0.16 m width: b, = b

stiffness: ¢, = 1-10'" N/m

contact
sector: ¢y = arctan(L,/(2R))  c.0of:. p=04
mean pressure:p, = 1000N/(L,b,)
contact stiffn.: cy = 3-10'° Pa/m
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