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Abstract. This contribution presents a generalized approach to friction induced vibrations in
systems of moving continua. To this end, Hamilton’s Principle is used to state a weak formu-
lation of the system dynamics without using specific structural models, like beams or plates for
instance. The normal contact is enforced by a penalty formulation, which motivates the use of
a constitutive contact model based on meso- and micromechanical properties.

By linearization about a stationary solution the perturbation equations are derived in a weak
form. Since moving continua are considered, inevitably there will be gyroscopic contributions
to the system. Special attention is paid to the derivation and linearization of the frictional
contributions. The resulting terms are interpreted with respect to their physical meaning, defi-
niteness and symmetry. It is shown that frictional effects affect the system’s stiffness as well as
its damping. It is found that using this quite general approach some universal properties can
be formulated. Finally, by means of a Ritz-type ansatz a discretization is carried out, leading
to a matrix differential equation. Due to stationarity of the considered solution, the differential
operators and thus the matrices are time constant.

Furthermore, a simple constitutive contact law following the assumptions of Greenwood-
Williamson is stated. It is found, that the contact stiffness is related to the local contact pressure
as well as to statistical parameters of the surface topography.

Finally, above results are demonstrated using the example of a rotating Euler-Bernoulli-
ring, which is sliding through frictional guidings. First, the general stability of the steady state
is discussed. It is found that this steady state may become unstable due to flutter and that the
stability behaviour is extremely sensible against dampingand gyroscopic effects. Moreover, the
influence of tribological contact parameters as the RMS of the asperity heights as well as the
contact pressure is demonstrated.
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1 INTRODUCTION

Self-excited vibrations in systems of moving elastic bodies are a common phenomenon in
engineering applications. Popular examples reach from squealing vehicle brakes or clutches to
insufficiently lubricated bearings.

a) b) c) d)

Figure 1: Exemplary systems from engineering application which may show vibrations due to friction self-
excitation.

Mostly, it is found that squealing is caused by a flutter-typeinstability due to friction of
the steady-state, which leads to self-excited vibrations.This instability mainly arises from
non-conservative contributions of the friction, which – after linearization and discretization –
yield a non-symmetric stiffness matrix. In the recent decades, the knowledge about friction
induced flutter has steadily grown and was mainly promoted inthe context of squealing vehicle
brakes. Here, flutter has been known as mechanism since the 1970s [8], but it was not before the
beginning of this century, that the influence of the frictiononto the system’s damping had been
revealed [11]. Later, the importance of gyroscopic terms due to the transport motion has been
pointed out ([1] for instance), which give rise to gyroscopic-circulatory perturbation equations,
that are known to exhibit a complex stability behaviour (e.g. [1], [9], [2]).

Moreover, another mechanism often associated with friction induced vibrations is instability
by divergence due to a negative slope of the coefficient of friction. Although the relevance of
this mechanism to practical problems is under debate, this model is often used to explain friction
induced vibrations [3].

Since usually the above mentioned phenomena are investigated using minimal models, it
seems interesting to carry out a general examination – without relying to special assumptions
or structural models – in order to clarify, whether there might be further mechanisms and to
promote a more global unterstanding.

2 MODELING

In the following, the dynamics of systems of moving elastic bodies with frictional contacts
will be described and the perturbation equations of a steady-state solution will be derived.
Thereby, the focus will be on general properties of symmetryand definiteness of the result-
ing differential operators.

2.1 System of moving bodies

In many engineering applications, the stationary motion ofan elastic bodyi may be decom-
posed into a prescribed rigid body motion~rT i and small motions~wi about this transport motion,
i.e.~ri = ~rT i + ~wi (cf. fig. 2 a). In the sense of a linearized description, the contact zoneΓC often
may be described with respect to the intermediate configuration~rT i after the rigid body motion.

Thus, from~rT i(x, t) = ~rT i(X(x, t), t) follows the identificationx = X(x, t), which relates
the spatial coordinatesx = (x, y, z)⊤ of the intermediate configuration to the corresponding ma-
terial coodinatesX = (X,Y, Z)⊤. If the intermediate configuration and the material reference
coincide att = 0, spatial and material coordinates are usually related byx = X+

∫ t

0
vT dt, thus

ẋ = Ẋ + vT , wherevT = (vTx, vTy, vTz)
⊤. Please note that the vector fields~rα = ~rα(x, t) are
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adressed by the spatial coordinatex and thus, material time derivativesd
dt

∣
∣
X

for fixedX = const
must account for the transport motion. Consequently, for instance, the field of material velocity
reads~vα = d

dt

∣
∣
X
~rα = ~̇r + v⊤

Tα
∂
∂x

~rα (α = i, j).

a) b)

Figure 2: a) Kinematics of a moving deformable body with intermediate configuration after the transport motion.
b) Kinematics of the contact between bodyi andj.

For a system ofN bodies, evaluation of an analytical principle, like Hamilton’s Principle for
instance, and subtracting the steady state due to the transport motion yields a weak formulation
of the perturbation equations

0 =
N∑

i=1

∫

Ωi

δ ~wi ·
(

Mi[ ~̈wi] + Pi[ ~̇wi] + Qi[~wi]
)

dv + ∆ {δΠC} − ∆ {δWC} − ∆ {δWnp} (1)

where∆{} denotes linearization,Mi = M⊤

i is the mass operator of theith body andPi =
Di + vTGi contains the symmetric damping operatorDi = D⊤

i as well as the skew-symmetric
gyroscopic contributionsGi = −G⊤

i . Moreover,Qi = Ki + vTNi + v2
TK∗

i consists of the
symmetric stiffness operatorKi = K⊤

i , the symmetric centrifugal effectsK∗

i = K∗⊤

i and may
exhibit skew-symmetric influencesNi = −N⊤

i from internal damping.∆ {δWnp} gathers the
virtual work of the remaining non-potentional forces, thathave not been considered otherwise.
In particular, this addend may account for momtentum flux across the system border if open
systems are discussed [7].

2.2 Contact

In order to express the contributions of the contactΓ
(ij)
C between bodyi andj, the gap vector

~g(ij) = ~rj − ~ri is introduced, which connects a surface point oni to its mating contact partner
on j. Using the decomposition of the positional field, the gap vector reads

~g(ij) = (~rj − ~ri) + (~wj − ~wi) = ~g0 + ∆~g (2)

and thusδ(∆gN) = δgN holds. On each contact partner, a tangential coordinate frame may be
defined using the outward surface normal~e

(i)/(j)
N . Using this, the normal gapg(ij)

N is given by
g

(ij)
N = ~g(ij) ·~e(i)

N and its variation readsδg(ij)
N = δ~g(ij) ·~e(i)

N . The direction of the sliding friction
tractions on bodyi andj read

~e
(i)
F = −~e

(j)
F = ~v

(ij)
rel /|~v(ij)

rel | where ~v
(ij)
rel = ~vj − ~vi. (3)

For the sake of brevity, the superscript(ij) is dropped in the following and the tangential system
of bodyi is used, i.e.~eN = ~e

(i)
N within a contact(ij).
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Using a penalty approach, one may introduce the contact potential ΠC = 1
2

∫

ΓC
kC 〈gN〉2 da,

where〈·〉 = min(0, ·) are the so-called McCauley-brackets. Variation and linearization yields

∆
{
δΠC

}
=

∫

ΓC

δgN kC∆gN da, (4)

wherep = p(∆gN) ≈ p0 + kC(−∆gN) = p0 + kC(−~eN ·∆~g) is the linearized contact pressure
andkC = ∂ p

∂∆gN
|0 is the linear contact stiffness, i.e. the linearization of constitutive contact law

p = p(gN) at the working point. Thus,

∆{δΠC} =

nC∑

(ij)

∫

Γ
(ij)
C

δ~g ·
[

kC (~eN ⊗ ~eN)
]

0
∆~g da =

nC∑

(ij)

∫

Γ
(ij)
C

δ~g · C
[
∆~g

]
da, (5)

where∆~g = ~wj − ~wi and [. . . ]0 stresses that the bracketed terms refer to the linearization
point. The symmetric contact stiffnessC = C⊤ is semi-positive with respect to the displacement
fields ~wi, ~wj, since the integration only affects the contact surface andis not influenced by the
displacement fields within the bodies.

The sliding friction stress vectors on the contacting bodies read~t(α)
F = µp~e

(α)
F (α = i, j),

where~t
(j)
F = −~t

(i)
F . Thus, the virtual work of the sliding friction betweeni-j readsδW (ij)

C =
∫

Γ
(ij)
C

δ(~rj −~ri) ·
[
−~t

(i)
F

]
da =

∫

Γ
(ij)
C

δ~g ·
[

−~e
(i)
F µp(gN)

]

da, from which Taylor expansion yields

∆
{

δW
(ij)
C

}

= −
∫

Γ
(ij)
C

δ~g ·
[
µ0p0∆~e

(i)
F + ~e

(i)
F0µ0∆p

]
da, (6)

where it has been assumed that the coefficient of sliding friction is constant. Withv(ij)
rel,0 =

||v⊤

Tj
∂
∂x

~r0j − v⊤

T i
∂
∂x

~r0i|| being the relative velocity in the linearization point, Taylor expansion

of ~e
(i)
F and ommission of higher order terms yields

∆~e
(i)
F ≈ 1

v
(ij)
rel,0

∆~vrel =
1

v
(ij)
rel,0

[
∆~̇g + v⊤

Tj

∂

∂x
~wj − v⊤

T i

∂

∂x
~wi

]
. (7)

a) b)

Figure 3: a) Linearization of the direction vector~eF of the friction within the contact between two bodies.
b) Example of a constitutive contact law relating contact pressurepN and distancegN . Linearization about a
working point.
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With ∆p = −kC∆gN = −kC (~eN · ∆~g) one finally obtains

∆{−δWC} =

nC∑

(ij)

∫

Γ
(ij)
C

δ~g ·
{[

µp0

v
(ij)
rel

I

]

0

∆~̇g

+

[

µp0

v
(ij)
rel

I

]

0

(

v⊤

Tj

∂

∂x
~wj − v⊤

T i

∂

∂x
~wi

)

−
[

µkC (~eF ⊗ ~eN)
]

0
∆~g

}

da

=

nC∑

(ij)

∫

Γ
(ij)
C

δ~g ·
{

R1

[
∆~̇g

]
+ R2

[
~wi, ~wj

]
+ R3

[
∆~g

]

}

da, (8)

whereR1 = R⊤

1 is a symmetric and positive semi-definite operator, whileR2 6= R⊤

2 ,R3 6= R⊤

3

are nonsymmetric.
The physical interpretation ofC as contact stiffness is obvious. The operatorsR1 andR2

stem from the changing direction of the friction stresses, while R3 arises from the change of
contact pressure as the bodies deform.

For small values ofv(ij)
rel,0 ≪ 0 the operatorR1 will become very large. However, the limit

v
(ij)
rel,0 = 0 is not valid since it would involve stiction, which was precluded. For the second

operatorR2 this may not be observed: since nominator and denominator are of the order of
magnitude of the velocity parameters, it will not become singular. In general it is found thatR2

has rather small influence on the system.
The operatorR3 expresses the non-conservative influence of positional forces on the system

and will be the reason of the flutter type instability. Pleasenote, that this contribution is mainly
controlled by the contact stiffnesskC , which will be investigated below.

2.3 Finite dimensional system dynamics

Eventually, discretization of equation (1) in conjuction with (8) leads to a system of ordinary
differential equations of the form

Mq̈ + (G + DS + DF ) q̇ + (K + K∗ + C + R2 + R3)q = 0 (9)

where

M , DS , K are symmetric and positive definite, (10)

DF , C , K∗ are symmetric and positive semi-definite, (11)

G is skew-symmetric and (12)

R2 , R3 are non-symmetric. (13)

Here the symbolDF for the discretization ofR1 has been chosen in order to stress the
symmetry ofDF . Hence, this problem belongs to the class of general gyroscopic-circulatory
stability problems and thus may exhibit a complicated stability behaviour, including divergence
and flutter ([2], [9] for instance).

The findings are summarized in table 1.
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operator stems from affects system’s contributes Matrix

R1 changing friction direction damping DF = D⊤

F ≥ 0
R2 changing friction direction stiffness R2 6= R⊤

2

R2 fluctuation of contact pressurestiffness R3 6= R⊤

3

Table 1: Overview on linearized frictional contributions to the perturbation equations.

3 CONSTITUTIVE CONTACT LAW

As has been found, the contact stiffnesskC is one of the influencing parameters to the fric-
tional contributionsR3 which is the cause of the flutter instability – thus, it is necessary to
give it a physical meaning. To this end, a constitutive contact law following the basic idea of
Greenwood-Williamson is adopted [4], [10].

Assume two rough surfacesz1, z2, where the heights of the asperities of each obey Gaussian
distribution functions with standard deviationsσ1 andσ2. Thus, the distancez = z2 − z1 itself
is also a gaussian stochastic process with distribution density Φ(z), whose standard deviation is
given by

σ =
√

σ2
1 + σ2

2. (14)

With this, the normalized vertical coordinates = z/σ along~eN and the normalized distance
h = gN/σ are introduced. The gap functiongN is interpreted as the distance of the nominal
surfaces located at the mean valuesz̄1/2 (cf. fig. 4 a). The asperities of both surfaces are locally
approximated by spherical caps with the radii of curvatureκ1 andκ2, which are made of ma-
terials with the Young’s-moduliE1 andE2. If Hertzian contact theory is applied to the local
behaviour of the asperities, the effective values

1

κ
=

1

κ1

+
1

κ2

and
1

E
=

1 − ν2
1

E1

+
1 − ν2

2

E2

(15)

may be assigned to the resulting processz, which describes the distance of the asperities.

a)

s

b)

1

2

3

1 2 3

Figure 4: Rough surfaces: a) Geometry, kinematics and distribution density of the asperity heights. b) Distribu-
tion density andβ = F3/2/F1/2.

The compression of an asperity of heights readsd = s−h. Thus, applying Hertzian contact
theory to the spherical caps yields the contact pressure

p =
P

A
=

4

3
ηE

√
κσ3F3/2(h), (16)

whereη is the number of asperities per unit area andFn(h) =
∫

∞

h
(s − h)nΦ(s)ds is a special

moment function of the distribution densityΦ. The densityη is difficult to measure and thus is
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unknown in most practical applications. In order to circumvent this problem, one may formulate

1

p

dp

dgN

∣
∣
p=p0

=
3

2σ

F1/2(h)

F3/2(h)

∣
∣
h=h(p0)

=
3

2σ
β(h0) (17)

to describe the contact pressure in the vicinity of a workingpoint (h0, p0). Sinceβ only weakly
depends onh, for many applications it may be assumed thatβ ≈ const around the working
point. This latter relation can readily be integrated to

p(gN) = p0exp

(
3β

2σ
(∆gN)

)

. (18)

Hence, the parameters of exponential constitutive contactlaws (like in ABAQUS, [5]) may
easily be related to toplogical properties of the surface, providedβ may be reasonably estimated,
as is the case for many applications. It shall be mentioned that similar results may be derived
by using exponential approximations ofΦ without the need to assume Hertzian contact ([4] for
instance). However, such approaches involve the quite uncertain parameterη, which has been
eliminated by the approach stated above.

Taylor expansion yieldsp(gN0 + ∆gN) ≈ p0 + kC∆gN where

kC = p0
3β

2σ
. (19)

It is noted, that the linearized contact stiffness depends on the standard deviationσ of the height
distribution as well as on the contact pressurep0 in the linearization point.

Please note that the presented approach relies on Hertzian contact theory, thus assuming
linear elastic behaviour. In order to test the applicability for problematic cases, the plasticity
indexΨ could be used for instance (e.g. [4]).

4 EXAMPLE: rotating Euler-Bernoulli annulus sliding through Wink ler-type bedding

Above results are exemplified with the example of a rotating Euler-Bernoulli-ring in fric-
tional guides, cf. fig. 5 a), which may be interpreted as a simple model for a vehicle disc brake.
The example comprises an annular Euler-Bernoulli beam (body2: radiusR, heighth, width

a)

3

1

2

b)

Figure 5: Example problem: rotating Euler-Bernoulli ring:a) System of bodies. b) Kinematics of the ring:
material reference frame (left) and spatial frame (right).

b, density̺, bending stiffnessEI) which rotates with the angular velocityΩ about the vertical
axis. The annulus slides through two frictional pads (friction coefficientµ =const), that are
modelled as Winkler foundations (bodies1 and3, heighthp, width b, density̺p, foundation
stiffnessk, spatial extent−ϕ0 ≤ x ≤ ϕ0).

In a reference configuration, the material coordinateΦ is introduced, while the spatial co-
ordinateϕ describes the position after the rigid body motion. The rigid body transport motion
relates the spatial frame to the reference frame viaϕ = Φ + Ωt.
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The displacement of the beam’s neutral fibre is denoted byw(ϕ, t), while w1(ϕ, t) and
w3(ϕ, t) refer to the displacements of the upper and lower friction pads’ surfaces. Further-
more, the superscripts()+ and()− to w(ϕ, t) refer to the upper and lower surface of the beam.
Thus, surface points on the friction pads have the position vectors

~r1(r, ϕ, z) = r~er + (w10 + w1)~ez = (r, 0, w10)
⊤

rϕz + (0, 0, w1)
⊤

rϕz = ~rT1 + ~w1 (20)

~r3(r, ϕ, z) = r~er + (w30 + w3)~ez = (r, 0, w30)
⊤

rϕz + (0, 0, w3)
⊤

rϕz = ~rT3 + ~w3. (21)

Here, the brackets(. . . )rϕz contain the coefficients to the unit vectors but not the coordinates.
The position vectors of points of the neutral fibre as well as on the beam’s surfaces read

~r2(r, ϕ, z) = (r, 0, 0)⊤rϕz + (0, 0, w)⊤rϕz = ~rT2 + ~w2 (22)

~r+
2 (r, ϕ, z) = (r, 0, h/2)⊤rϕz + (0,−h/(2R) w′, w)⊤rϕz = ~r+

T2 + ~w+
2 (23)

~r−2 (r, ϕ, z) = (r, 0,−h/2)⊤rϕz + (0, +h/(2R) w′, w)⊤rϕz = ~r−T2 + ~w−

2 (24)

(cf. fig. 2 b). Please note that in order to formulate the displacement of the beam’s surface points
Euler’s normal hypothetis has been used. The displacement fields within the friction pads are
assumed to vary linearly withz, i.e.

wp1(z) = w1

(

1 − (z − w10)

h

)

, z = w10 . . . (w10 + hp) (25)

wp3(z) = w3

(
z − w30

h

)

, z = w30 . . . (w30 + hp). (26)

Eventually, the dynamics of the system is described by
∫ 2π

0

δw
(
̺bh(ẅ + 2Ωẇ′ + Ω2w′′) + EIw′′′′

)
dϕ (27)

+
∑

i=1,3

∫ ϕ0

−ϕ0

δwi

(
̺pbhp

3
ẅi + kwi

)

dϕ +∆ {δΠC − δWC} = 0. (28)

The contact contributions∆ {δΠC − δWC} between the sliding beam (body2) and the
upper and lower pad (body1, 2 resp.) are derived using the theory stated above. In or-
der to obtain equations of similar structure for both contacts, it is advantageous to calculate
∆WC = ∆W

(12)
C + ∆W

(32)
C . The necessary tangential systems read

body 1: ~e
(1)
F = (0, 1, 0)⊤rϕz , ~e

(1)
N = (0, 0,−1)⊤rϕz (29)

body 3: ~e
(3)
F = (0, 1, 0)⊤rϕz , ~e

(3)
N = (0, 0, +1)⊤xy. (30)

a)

kc

b)

F

linearization point beampad

R

Figure 6: Kinematics of the system in the contact: a) Contactzoneϕ = −ϕ0 . . . ϕ0, displacement fieldsw of the
neutral fibre andw1, w2 of the friction pads’ surfaces. b) Contact between body 1 (upper friction lining) and body
2 (ring): configuration in the linearization point with local tangential frame (left), displacement fields about the
linearization point.
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The linearized gap vectors read

∆~g(12) = ~w+
2 − ~w1 = (0,−h/(2R) w′, w − w1)

⊤

rϕz (31)

∆~g(32) = ~w−

2 − ~w3 = (0, +h/(2R) w′, w − w3)
⊤

rϕz (32)

and thus the corresponding variations readδ~g(12) = δ(∆~g(12)) = (0,−h/(2R) δw′, δw−δw1)
⊤

rϕz

andδ~g(32) = δ(∆~g(32)) = (0, +h/(2R) δw′, δw − δw3)
⊤

rϕz.
Hence, inserting these quantities into (5) the normal contact contributions of the upper con-

tact for instance yields

∆
{

δΠ
(12)
C

}

=

∫ ϕ0

−ϕ0

bkC





0
−h/(2R) δw′

δw − δw1





⊤ 







0
0
−1



 ⊗





0
0
−1













0
−h/(2R) w′

w − w1



 dϕ (33)

=

∫ ϕ0

−ϕ0

bkC (δw1 − δw) (w1 − w) dϕ (34)

and from equation (8) one gets the virtual work of the tangential forces

∆
{

δW
(12)
C

}

=

∫ ϕ0

−ϕ0





0
−h/(2R) δw′

δw − δw1





⊤ {
[µp0

Ω
I
]





0
−h/(2R) ẇ′

ẇ − ẇ1



 (35)

[µp0

Ω
I
]

Ω
∂

∂x





0
−h/(2R) w′

w



 (36)

−µkC









0
1
0



 ⊗





0
0
−1













0
−h/(2R) w′

w − w1





}

bdϕ

=

∫ ϕ0

−ϕ0

δw′
h2

4R2

[µp0

Ω

]

ẇ′ + δ[w − w1]
µp0

Ω
[ẇ − ẇ1] bdϕ (37)

+

∫ ϕ0

−ϕ0

δw′
h2

4R2
[µp0] w

′′ + δ[w − w1]µp0w
′ bdϕ (38)

−
∫ ϕ0

−ϕ0

δw′
h

2R
µkC [w − w1]µp0w

′ bdϕ. (39)

The terms∆
{

δΠ
(32)
C

}

, ∆
{

δW
(32)
C

}

arising from the second contact on the lower surface are

derived analogously and are of similar structure. At this point, the symmetry properties of
the frictional terms turn obvious: while equation (37) willcontribute symmetric terms to the
system’s damping, the remaining (38) and (39) are non-symmetric positional contributions.

In order to allow for further interpretation the frictionalterms the linearized upper friction
traction ∆~t+ may be decomposed according to∆~t+ = µp0∆~eF + ~eF0µ∆p + ~eF0p0∆µ =
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∆tϕ~eϕ + ∆tz~ez. Thus, rearrangement of (37)-(39) yields

∆
{

δW
(12)
C

}

=

∫ ϕ0

−ϕ0

δw′
h

2R
∆tϕ + δ[w − w1]∆tz bdϕ (40)

=

∫ ϕ0

−ϕ0

{

δw′
h

2R

[

µp0

( h

2ΩR
ẇ′ +

h

2R
w′′

︸ ︷︷ ︸

∆~eF ·~eϕ

)

− µ kC(w − w1)
︸ ︷︷ ︸

∆p

]

(41)

+(δw − δw1)µp0

[ 1

Ω
(ẇ − ẇ1) − w′

︸ ︷︷ ︸

∆~eF ·~ez

]
}

bdϕ. (42)

The first addend in (40) is readily found to express the virtual work of the torqueh/2 ∆tϕ, while
the second is the virtual work of the vertical component∆tz (cf. fig. 7). Moreover, the first and
the last underbraced term in (41), (42) are components of∆~eF , consisting of the local derivative
together with the corresponding convective parts.

Figure 7: Physical interpretation of the contributions entering the virtual work of the friction: the traction∆~t does
virtual work along the virtual displacementh

2
δw′.

Finally, in order to discretize the weak formulation (28) the spatial fields may be approxi-
mated by a Ritz-type ansatz of the formwk =

∑K
i=1 fki(ϕ)qki(t) = Φkqk of orderK, where the

matricesΦk(x) contain spatial ansatz functions. The virtual displacements readδwk = δq⊤

k Φ⊤

k .
Although the continuum is moving, the spatially fixed friction pads suggest spatially fixed vi-
bration patterns; this assumption is validated by experimental observations. Thus, the harmonic
eigenfunctions of the non-rotating beam are chosen as ansatz functions, hence

wk = [. . . cos nϕ sin nϕ . . . ]








...
qk 2n−1

qk 2n
...








= Φkqk , k, n = 1, . . . , K. (43)

In general, the contact pressurep0 = p0(ϕ) in the steady state will be spatially distributed
over the contact zone. Hence, if a constitutive contact law like (48) is used, the contact stiffness
kC = kC(p0(ϕ)) will also depend on the position. For this case, the perturbation equations of
the steady state get

Mq̈ + ΩGq̇ +
µ

Ω
DF (p0)q̇ +

[
K + Ω2K∗ + KN(kC) + µR3(kC) + µR2(p0)

]
q = 0(44)

p0 = p0(ϕ) , kC = kC(p0). (45)

The frictional influence on the system produces the matrixDF , R2 andR3 which stem from
R1, R2 andR3 respectively (cf. eq. (8)). The coefficient of friction has been assumed constant
over the contact.

10
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Since an analytical principle has been used and the linearization point is a stable static equi-
librium, M = M⊤ andK = K⊤ are symmetric and positive definite. The gyroscopic terms
G = −G⊤ are skew-symmetric. Moreover, as predicted aboveDF = D⊤

F , KN = K⊤

N are sym-
metric and positive semi-definite andR2 andR3 are not symmetric. Usually, the entries ofR3

are found to be much larger than those ofR2. Equation (44) is a gyroscopic-circulatory system,
which may exhibit flutter instability due to the non-symmetric positional forces (e.g. [2], [9],
[1]).

4.1 Steady-state stability

It is assumed, that the trivial solution of (44) belongs to stable static solution and thatΩ and
thus the centrifugal termsΩ2K∗ are comparatively small. Moreover, in most cases curvaturew′′

and the inclinationw′ are small and thus the influence ofR2 is indeed found to be negligible.
Thus, equation (44) simplifies to

Mq̈ + ΩGq̇ +
µ

Ω
DF (p0)q̇ + [K + KN(kC) + µR3(kC)+]q = 0 (46)

p0 = p0(ϕ) , kC = kC(p0). (47)

Here, the trivial solution may only get unstable due to the non-symmetric, non-conservative
contributionsR3, which may lead to a flutter-type instability. Although thisis the actual reason
leading to instability, it may be strongly affected by velocity dependent terms stemming from
dissipation and transport motion.

Furthermore, since all frictional contributions depend onthe contact parametersp0 andkC ,
they will have a significant effect as well. The contact stiffness is chosen according to equation
(19). For instance, for typical working conditions in vehicle brakesβ may be estimated as
β ∈ [4/3 . . . 6/3]. Moreover, it is found by experiments that the distributionof the asperities
may be adequately described by Gaussian distributions. Typical standard deviations found are
σnew ≈ 20µ for new brake pads andσworn ≈ 5µm for worn pads [10]. Thus, choosing an
average value ofβ yields

kC ≈ p0
5

2σ
, (48)

wherep0 = p0(ϕ) and thuskC may vary within the contact zone.

4.1.1 Basic mechanism of flutter instability

Due to the assumptionsD ≥ 0 and (K + KN) > 0 together withM > 0, divergence
instability is ruled out and thus the trivial solution may only get unstable due to flutter, which is
produced by the non-symmetric contributions to the positional forces.

In this context, it is emphasized that the Theorem of Thomsonand Tait does not apply due
to the non-symmetric stiffness matrix and thus, it is not assured that adding dissipation or gy-
roscopic terms may not destabilize the trivial solution (e.g. [12] , [9], [6], [1]). Hence, inves-
tigating the simplified MKN-system in order to obtain an estimate of the stability border is
not a valid approach – moreover, the influence of velocity-proportional contributions may al-
ter the stability border significantly, as will be demonstrated below. However, the underlying
mechanism leading to instability is flutter.

11
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Circulatory system Although an investigation of the simplified MKN-system willnot yield
a reliable estimate of the stability border of the full system, in a first approach the undamped,
non-gyroscopic circulatory system

Mq̈ + [K + KN(kC) + µR3(kC)+]q = 0 (49)

will be used to demonstrate the basic mechanism of flutter. From equation (49), it is obvious
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Figure 8: Eigenvalues of a circulatory system (MKN): a) Imaginary parts of the eigenvalues as the load parameter
µ is changed. Divergence does not occur since no imaginary part vanishes. b) Imaginary parts of the first two
eigenvalues that become unstable and corresponding real parts (lower subfigure) as functions ofµ. c) Eigenpaths
of the first unstable eigenvalue in the complex plane.

that the influence of the non-symmetric frictional influenceR3 is controlled by the parameter
µ, which is sometimes referred to as load parameter. From equation (39) it is clear that the
frictional contributions also depend on the contact stiffness as well as on the spatial extent of
the contact zoneϕ0. Please note, that the contact stiffnesskC and the coefficient of frictionµ
appear as product and thus will influence the result equally.The rotational speedΩ does not
influence the behaviour of the simplified equation (49).

In order to examine the stability of the trivial solution, the ansatzq = reλt is used to derive
from (49) the corresponding polynomial eigenvalue problemfor the eigenvaluesλ.

Figure 8 displays the behaviour of the eigenvalues of (49) independence ofµ: subfigure
a) displays the imaginary parts of the eigenvalues and proves that divergence does not appear
since no eigenfrequency vanishes. Part b) shows the real parts (bottom) and the imaginary parts
(eigenfrequencies) of the first two eigenvalues that becomeunstable. Subfigure c) shows the
behaviour of the first unstable eigenvalue in the complex plane. The shown eigenvalue be-
haviour is the typical scenario for flutter instability: as the load parameterµ – i.e. the parameter
that controls the influence of the non-symmetric influences on the system – is varied, pairs of
eigenvalues mutually approach (8 b). Initially being pureley imaginary, they converge and after
merging at a distinctµ = µcrit, they leave the imaginary axis into opposite halfplanes of the
complex plane (8 c), causing instability.

The non-conservative partR3 depends on the contact stiffnesskC as well as on the integration
limits ϕ0 = arctan Lp

R
. Figure 9 shows the stability border for varying contact stiffness for two

different pad lengthsLp. The strong effect ofkC emphasizes the need of either experimentally
verified values or physically sensible constitutive contact models, relating measurable surface
properties to contact stiffness values. Furthermore, it can be seen that also the spatial extent of
the contact (described byLp) has a strong effect.
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Figure 9: Stability borders of the circulatory system (MKN)for varying coefficient of frictionµ and contact
stiffnesskC , outlined for two different lengthsLp of the contact zone. Note the significant impact of the contact
stiffness on stability.

Full gyroscopic-circulatory system As mentioned before, it is not possible to use the sim-
plifed undamped non-gyroscopic problem to examine the stability. Thus, it is necessary to
investigate the full system. As a well known fact, velocity-proportional contributions to circula-

a) b)

Figure 10: Schematic of the eigenvalue behaviour of generalsystems with dissipation, gyroscopic effects and
circulatory contributions (MDGKN): a) Special case of ”modal” velocity proportional contributions, i.e. that
eigenvectors of the pure circulatory system (MKN) are also eigenvectors of the full system (MDGKN). b) General
case.

tory systems may alter the stability border drastically. Inparticular it is found that the transition
scenario of the eigenvalues for changing load parameterµ is totally different to that of the purely
circulatory system. Here again, pairs of eigenvalues stillapproach and two genuine scenarios
may be distinguished:

a) b) −100 0 100
2005

2010

2015

2020

2025

2030

RE{λ}

IM
{λ

}/
(2

π
)

Figure 11: Eigenvalues as function ofµ for a small angular velocity (Ω = 0.5π/s): a) Imaginary parts of the first
two unstable eigenvalues and corresponding real parts. b) Eigenpath in the complex plane.
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Figure 12: Eigenvalues as function ofµ for a higher angular velocity (Ω = π/s): a) Imaginary parts of the first
two unstable eigenvalues and corresponding real parts. b) Eigenpath in the complex plane.
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Figure 13: Stability border: a) Influence of different modelling levels on the stability. (A) - damped circulatory
system (MDKN), (B) circulatory system with frictional damping (MDKN), (C) full system (MDGKN). Obviously
the gyroscopic contributions may have a strong effect even at low speeds. b) Influence of the normal forceFN on
the friction linings for a constant contact stiffness (cN =const).

a) If the velocity proportional terms fulfill the conditionsof modal ”damping” – i.e. ifP =
(D + G) andQ = (K + N) are interchangeable in the sense of(M−1Q)(M−1P) =
(M−1P)(M−1Q) – the transition scenario of the eigenvalues involves a critical point
where two imaginary parts merge. However, this critical point will in general not mark
the stability border. This case is outlined in figure 10 a). This constellation may only
occur in very special situations, since the componentes ofP andQ stem from different
independent physical effects – friction, motion of the continuum, etc. – which change as
the corresponding parameters are varied. Thus, this case will only very unlikely occur.

b) In general, the velocity proportional terms will not be ”modal” in the sense of interchange-
ble matrices(M−1P) and(M−1Q). Then also, two eigenvalues will mutually approach
– however, they will not merge. Thus, there will be no distinguished critical point and the
stability border may not be detected by only looking at the imaginary part. This scenario
is outlined in figure 10 b). This is the general scenario and will almost always be the case.

Figures 11 and 12 show the corresponding results for the discussed example problem: sub-
figures a) show imaginary and real parts of the first two eigenvalues that become unstable, while
subfigures b) display the eigenpaths in the complex plane. Itis obvious that the influence of the
non-modal velocity proportional contributions leads to a behaviour of the eigenvalues which is
more complex than that of the purely circulatory system.
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The influence of the gyroscopic termG – stemming from the transport motionΩ – is shown
in figure 13 a), which displays the stability border of the example system for different modelling
levels. The dotted line (A) denotes the stability border of the ciruclatory system (MDKN) with
symmetric structural dampingDS, but without frictional damping and gyroscopic effects. Ina
next step towards the full system, the gray line (B) outlines the stability border of the circulatory
system (MDKN) with symmetric dissipationDS + DF , comprising structural damping as well
as the dampingDS arising from the linearized friction forces. Finally, the black line (C) is the
stability border of the full system (MDGKN), comprising alldissipative effects inD as well as
the gyroscopic termsG due to the transport motion.

Figure 13 b) shows the influence of the normal force on the brake linings of the full system for
constant contact stiffnesscN =const. As the normal force is increased, the pressurep0 = FN/A
increases and thus the influences of the frictional damping rises.

4.1.2 Influence of contact tribology and pressure distribution

The previous considerations did not account for the influence of parameters related to the tri-
bological behaviour of the contact, namely the contact stiffnesskC and the pressure distribution
p0 = p0(ϕ) within the contact.

Assuming asperity heights obeying a Gaussian distribution, the contact stiffness may be
expressed by equation (48), i.e.kC = p0

5
2σ

. Thus, the contact stiffness depends linearly on
the local contact pressurep0 in the linearization point and further depends on the RMS of the
distribution of the asperity heights.

Figure 14 displays the contact stiffness as function ofσ of the asperity heights distribution
and of the local contact pressurep0 in the linearization point.

z

j

kC

Figure 14: Contact stiffnesskC for different asperity height RMSσ and local pressurep0.

In general, the local contact pressure will be spatially distributed, depending on the overall
force applied to the friction linings as well as on the elastic behaviour of the structure. Thus,
the contact stiffness as well will vary over the contact area. Figure 15 gives a survey on the
influence ofσ andF =

∫
p da for two different contact pressure distributions

I) p = p0 = const , p0 =
FN

A
(50)

II) p = pmax cos

(
π

2

ϕ

ϕ0

)

, pmax =
π

2
p0. (51)

As is clear to see, the topography parameterσ as well as the distribution of the contact pres-
sure have a tremendous influence on the stability behaviour.In general, thecos−like pressure
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distribution II) seems more squeal-proof than the constantpressure I), which might be due to
the fact that only a smaller region es exerted to higher pressures. Concerning the influence of
σ, no obvious rule is observable.

These results correspond to the experimental observationsthat squealing systems (like vehi-
cle brakes) often start squealing after a certain period of usage, i.e. whenσ has been changed
by wear. Furthermore, it is known from practice that even small changes in the elastic structure
or of the point of application of the lining force may change the overall acoustic behaviour.

I) II)
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Figure 15: Stability charts as function of the surface topography and contact pressure distribution.
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5 Conclusion

Using an abstract and thus general approach, the structure of the equations of motion of
a system of moving bodies has been outlined. From this, the structure of the perturbation
equations arising from linearization about a stationary solution has been stated, which comprises
gyroscopic contributions due to the transport motion. Special attention has been set on the
frictional contributions, namely on definiteness and symmetry of the corresponding differential
operators. It is emphasized that these findings have been derived without relying on specific
structural models (like beams, plates, . . . ) and thus are universally valid. The general findings
about frictional influences to the perturbation equations are summarized in table 1.

Moreover, a simple constitutive contact model based on the theory of Greenwood-Williamson
as well as on Hertzian contact theory is developed, which overcomes some difficulties in de-
termining specific parameters needed in the classical G&W model. It is found that for many
engineering problems the contact pressure is given by an exponential function, which depends
on the RMS value of the asperity heights as parameter of the surface topography.

Finally, the findings are demonstrated using an example problem of a rotating Euler-Bernoulli
ring, which slides through friction pads. which may be interpreted as simple model for the ex-
amination of brake squeal. In order to clarify further findings, basic results of the theory of
general system with special emphasis on gyroscopic-circulatory systems are recapitulated.

It is demonstrated that the gyroscopic contributions due tothe transport motion may have
a significant effect on the stability border even for low speeds. Furthermore, it is found that
the contact stiffness and thus the constitutive contact model is of major importance for stability
assessments since it may alter the stability behaviour tremendously. The presented contact
model relates the contact stiffness to surface topography and local contact pressure and it is
found, that the spatial distribution of the contact pressure may also have a strong effect on the
stability.
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Appendix: Simulation parameters

Unless subjected to variations, the parameters used in the example problems (cf. fig. 5) are:
rotating ring
mean radius: R = 0.15 m width: b = 0.08 m

thickness: h = 0.02 m
Y.-Modulus: E = 2.11 · 1011 Pa density: ρ = 7.8 · 103 kg/m3

friction pads
thickness: hp = 0.01 m length: Lp = 0.16 m width: bp = b
stiffness: cp = 1 · 1011 N/m

contact
sector: ϕ0 = arctan(Lp/(2R)) c.o.f.: µ = 0.4

mean pressure:p0 = 1000N/(Lpbp)
contact stiffn.: cN = 3 · 1010 Pa/m
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