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SUMMARY

The inelastic material properties of Metal Matrix Compesitvith particulate rein-
forcement are investigated. A method for the generationsppadial discretization of a
class of model microstructures is presented. The Nonuniftmansformation Field Anal-
ysis is employed to examine the microheterogeneous mhté&hanerical examples are
presented.
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1. INTRODUCTION

The development of microheterogeneous materials has be#erced in the past two
decades with the main aim being an improvement in the wesgbtigth ratio of engi-
neering structures. Additionally, multiphysics applioat have seen increasing attention
lately. An example for the latter is thermal managment whbeeemechanical and the
thermal properties of the material are optimized in a cotiplececdure.

The linear thermal and mechanical properties of micrologiegneous materials are
well understood for many materials and a variety of homaozgtion methods has been
proposed in the past century (see e.g. [1] for a summary)niPient analytical and semi-
analytical methods for the homogenization are the uppegt\mund and the lower Reuss
bound, the Hashin-Shtrikman variational principle [2]e thlori Tanaka method [3] and
the self-consistent scheme by Krdner [4]. Numerical cormpoms have shown that these
methods can determine the linear properties of many miteobgeneous materials to a
sufficient extent (e.g. [5]) if the contrast in the physicedjerties (thermal conductivity;
elastic moduli) is small enough.

When non-linear material properties are observed manyeasumptions entering
the mentioned methods are no longer satisfied. Particuldmystress and strain fields
become nonlinear functions when inelastic deformatiorsaacounted for on the micro-
scopic level. This evolution cannot be determined (senmaj\ically due to severe path
dependency. To overcome these short-comings, severalriuatmaethods have been de-
veloped. A numerical multiscale method is the multi-leviglife Element Method (FB.
The method has seen massive attention for two-dimensionblgms (e.g. [6]). Fur-



ther, the technique has been extended to generalized nantin7]. The large degree
of freedom with respect to the modelling of materials anddtires when using a multi-
level FE approach in return leads to excessive number ofegsgof freedom even for
two-dimensional problems. Application to three-dimemnsibproblems is still limited,
despite the ever increasing amount of available memory pagower. It has to be men-
tioned that, usually, FErequires massive parallelization which precludes appboaof
the method for a broader audience.

A method for the condensation of the number of degrees otitmeewas proposed
by Dvorak [8, 9] in terms of the Transformation Field AnalygTFA). In the latter the
plastic strain fields are assumed to be constant in subdsneéithe microscopic mate-
rial. Hence, only few coefficients need to be computed. Theéhatehas been applied for
the homogenization of non-linear material properties ofanals at acceptable numerical
cost. However, the method has shown to provide rather sgfionse [10].

To overcome this overly stiff prediction of the effective teaal response of the unit
cell it has been proposed by Michel, Suquet and co-workets 12, 13] to extend the
TFA to the case where the plastic strain fields are no longestemt. More precisely, the
characteristic deformation patterns of composite stmastean be replicated using only
few scalar coefficients. The method has been applied to tmemsional composites with
great success [11, 12, 13].

In this paper we apply the NTFA to random three-dimensionadleh microstructures
resembling particulate MMCs in the absence of damage,ineat elastic particles and
a ductile matrix material are considered. The latter aretas the Voronoi tessellation
of a random set of points. Section 2 is devoted to the gewerafithe geometry and the
spatial discretization of the latter. In Section 3 we briedlyisit the constitutive equations
of the NTFA and derive equations describing the macroscuoterial behaviour using
the internal variable. The effective stress strain resparithe homogenized material is
compared to the one of full-field unit cell computations irct&en 4.

2. MODEL MICROSTRUCTURES

Model microstructures based on Voronoi tessellations heaen used for polycrys-
talline aggregates in the past ([14] and others). The asthave recently proposed a
fast mesh generator based on the Voronoi tessellation vanéztes not only periodic mi-
crostructures but also periodic mesh topologies while #engetry is exactly replicated
[5]. In this section we describe a modification of the progediescribed in [5] for the
construction of three-dimensional model microstructuressisting of a matrix material
and polygonal particulate inclusions.

First, a (for simplicity) cuboidal unit cell of the type
Q2 =[-w/2,w/2] x [~d/2,d/2] x [~h/2,h/2] C R (1)

is considered. Then a set 6f random points?; € (2 is generated and copied 26 times
around to unit cell in order to define a periodic Voronoi tdisgien [15]. A point X € (2
is part of the Voronoi cell defined by the poit which has the smallest (Euclidean)



distance taX. The cells of a Voronoi tessellation are convex boundedpedya which
can either be characterized by their corner vertices orrimseof the intersection of a set
of m halfspaces, withn being the number of faces of the cell. The two representation
are dual to each other.

Figure 1. Shrinking a convex polyhedron (here: in 2d)

Each of the halfspaceq; can be characterized by its outward unit normal veeipr
and the offseb, from the origin. Suppose now that a cell is defined by a sét/dlples
{n;,d;}i=1__. By modifying the offset parameter via

all cell faces are translated in negative unit normal dicgctorming a separating layer of
thicknessh between neighboring cells (Fig. 1). The cells constructgdgithis method
have the following properties:

e Cells can vanish during the shrinking process due to theallamitial size.
e The remaining cells are convex.

e All cells have a uniform distance to their direct neighbams, there is no penetra-
tion and no percolation.

e The number of faces of the new cell is smaller or equal the rarrabfaces on the
original cell.

e The volume fraction of the cells (representing the inclasjocan easily be scaled
by modification of the parametér.

e The microstructure is periodic. This allows to endow the aall with periodic dis-
placement boundary conditions or anti-periodic tractionrdary conditions (e.g.
[6] and others).

With the definition of the faces of the inclusions a periodicee-dimensional mesh can
be obtained by the procedure described in [5] with minor riicalions. Particularly, the

filler material has to be added to the mesh and the surface oretiie faces of the unit

cell has to be modelled with care. It is noteworthy that theastiages of the mesh gen-
eration algorithm such as fast mesh generation and fulllabEmesh density apply to
this new class of model microstructures. Additionallysitnossible to modify the point

seedP; by superimposing a hardcore condition etc.

Example meshes favV = 5 and200 are shown in Fig. 2. Remarkably, the larger the
number of inclusions the denser the mesh has to be in ordeptxeproper results from



a finite element analysis. This may quickly lead to severdlionidegrees of freedom in
a purely mechanical analysis. Hence, such discrete mraaistes are not recommended

for application with FEE methods [7, 16].
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Figure 2: Example meshes fof = 5 (left with periodic continuation)200 (right)

3. NONUNIFORM TRANSFORMATION FIELDS

In the following we restrict ourselves to mechanical twadscproblems in a small
deformation setting. The stress straine and the displacement are assumed on the
microscopic scale (unit cell level), whereas overlinedmjiiees are taken at the macro-
scopic (structural) level on the domafhwith boundaryl” = 92. The macroscopic and
the microscopic fields are related by the averaging opefator

g = (e), o= (o). 3)

Figure 3: Macroscopic (structural) problem and associatenloscopic problem

Then the homogenization problem persists in solving

div(e) =0 _ing2, div(e) =0in {2,
(P):{ on=t =t onl; C I, and(P): (e) =g, 4)
u =u* on#I,CT, o admissible

where the admissible domain efis, e.g., defined by the yield surface of an elasto-plastic
material.



The major assumption of the NTFA is the existence of a finiteatisional basis
spanned by plastic strain fielgg? (x) (i = 1,..., N < 0o), such that the plastic strain
field eP can be approximated g}, | for somed, > 0, such that

Empp(t, ) = Zﬁ(i)(t)u(i)(w), le2pp (1, ) — &P (t, )| < o (5)

for some suitable norm usually involving volume averagingrdhe unit cell (e.g. thé?,
norm). Obviously (5) cannot be satisfied for arbitrary defation processes. However,
it can be observed that real materials show characterisfmrohation patterns, e.g. plas-
tification in regions close to stiffer inclusions. Thesetpats are massively influenced by
both, the physical properties of the material (anisotropylinearity) and the topology of
the heterogeneous medium. The latter can for example beildedby means ofi-point
correlation functions [17].

The idea of the NTFA persists in trying to determine (a smatl dufficient number
of) plastic modeg.”) associated with the characteristic deformations of a wlitio a
numerical testing environment and then to formulate apag evolution equations for
the coefficients ) (¢). The local stress and strain field at positierand timet can be
expressed in terms @f(t) and the strain concentration tensiofx)

e(x,t) & + Zg (t)eV) (x (6)

o(x.t) = C(a)A(2)E] + Z V(1o (). (7)
j=1
Following the method introduced in [11, 12] the thermodyi@adriving forces are:
— (ATC[p)) - & + Zéﬂ (u?- o) = (ATC[u"]) -e + DE,  (8)

with o) = C[e!”) — 10| the solution of the eigenstress problem
(P)): div(C[el) — pP)) =0, () =o. 9)
We assert that the modes satisfy the restrictions of [11, 12]
e The modes are normalizéd||p'” ;) = 1).

e The modes are linearly independent and the support of itddali modes is re-
stricted to one phase.

¢ The modes are orthogondl(") - u)) = 0 (i # j)).
A suitable evolution equation for the internal variab§és has been found to be

» . 7@
§9 = AT (10)
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for a material showing plasticity of von Mises type. The ahte .\ is a Lagrangian mul-
tiplier satisfying the Karush-Kuhn-Tucker complementeoyditions

Ap =0, A>0, for o(r,q) = |7l — V2/30r(@).  (11)

The variablej is an additional internal variable accounting for isotipardening effects.
The latter is assumed constant over the entire unit cell, it.das a spatially uniform
distribution. The evolution equation for the hardeningahle is

.o ]2

q§=M/=. 12

q 3 (12)
As an important outcome of (7), the macroscopic steessa linear transformation of the

macroscopic straia(¢) and coefficientg (¢):

=Clg] + Z D) (e, (13)

4. NUMERICAL EXAMPLES
4.1 Problem setting

The NTFA is implemented into ABAQUS/STANDARD using an imgptitime inte-
gration procedure based on the Backward Euler scheme wgratee(11) and (12) on the
interval [t,,, t,+1].

In a first step we examine the efficiency of the NTFA at intagrapoint level. More
precisely, we define an arbitrary proportional strain paitliX a full field unit cell com-
putation and (ii) the homogenized material model. The foilgy quantities are then
compared: (i) the macroscopic stress(ii) the average plastic straif,,) in the metal
phase and (iii) the component; of the stress field (full field vs. reconstructed field).
The strain rate of the process considered here is

—0.01027 0.07142 1.6983
0.15701  1.8680 st (14)
sym. —0.1467
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It is held constant during the process tiffie= 0.05s. A total of only six different modes
has been chosen for the model microstructure containiregthmear elastic particles(
18.45% vol. fraction). The material parameters for the inclusi@ms set to the ones
of polycrystalline Alumina (MO;, £ = 375 GPa,v = 0.22). The matrix material is
aluminium (AISi12) with nonlinear isotropic hardening bkttype

or(q) = 09 + hqg + Ac(1 — exp(—kq)), (15)

with ¢ a strain like hardening variable ressembling the equivgdastic strain and non-
negative material parameterg, Ao, k (£ = 70 GPa,v = 0.32, 0y = 80 MPa,Ac = 40



MPa,h = 50 MPa, k = 23.75). The large degree of nonuniformity of the plastic strain
field, the displacement field and the stress field is exemgiifi€ig. 4 for the first inelastic
mode (scales normalized) which has been identified from aenigal test at macroscopic
strain rate

3250/2(261(861—€2®€2—63®63). (16)

Figure 4: Plastic Mode 1: induced von Mises stress (right); ¢}, (left)

4.2 Time history of macroscopic average stresses and plasstrains

The time history of macroscopic stress tensor of the fulbfisdmputations*f and the
NTFA &NTF are compared in Fig. 5. The diagonal components (Fig. 5) deftl the
shear components (Fig. 5; right) have been separated fatycla
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Figure 5: Time history o1, g9, 033 (left) andas, 713, 93 (right)

A good agreement was found for the components of the maqgoasswess with excel-
lent results for the shear directions which are subjectédrtger strains (see (14)). While
the relative deviation of the normal componentgagshow some discrepancy between the
NTFA and the reference computation it has to be pointed aitttie relative error with
respect td|a|| are in the order of - 10~% and smaller.



Additionally, we have evaluated the components of the e the plastic strain
tensor, where the average has been taken with respe@f,toe. with respect to the
inelastic volume. The results are shown in Fig. 6. Againymadrand shear components
have been seperated. Remarkably, there are almost noidasiéetween the full field
simulation and the NTFA prediction. Hence, the requiren{gnholds for a smalb,,.
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Figure 6: Time history ofel,), (3,), (<53) (left) and(e?,), (e13), (¢33) (right)

4.3 Full field reconstruction

In order to evaluate the degree of the local approximatierfulhi fields of the stress, (total
and plastic) strain and the displacement have been recatedrfor the last increment of
the analysis. Attention is confined to th&-component of the stress tensor.
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Figure 7: Magnitude ofr,; of the full field simulation (left), the NTFA reconstruction
(middle) and the difference"™™ — oi<f (right) (metal matrix shown only)

Figure 7 shows the results of the full field simulation (Ieftfe NTFA reconstruction
(middle) and the difference between the two stress fielda{yi We focus on the inelastic
matrix material and, hence, have removed the elastic ceraganiticles. By metric of
vision the two fields show a good qualitative agreement. Hewethe reconstructed



stress field shows some deviations from the reference saluti

5. SUMMARY AND CONCLUSIONS
5.1 Summary

In section 2 we have briefly described a procedure for the rg¢ioe of random three-
dimensional model microstructures. The presented algorhas the advantage that the
particles have a constant distance to each other and ailpitiagh volume fractions are
possible which is critical for many other algorithms. Theimaquations of the NTFA
have briefly been revisited in Section 3. A comparison betwaeéull field simulation at
unit cell level and the results predicted by the NTFA is perfed for a rather small num-
ber of only 6 inelastic modes. A good agreement has been floutise components of the
macroscopic stress tensor. The agreement of the averagjecgtain is excellent. Some
quantitative deviations between the reconstructed sfrelssand the reference solution
can be observed. However, the qualitative agreement iptaide, i.e. stress concentra-
tions are properly resolved.

5.2 Conclusions

The NTFA introduced by Michel and Suquet [11, 12] has beenempnted for three-
dimensional problems with random microstructures with ghhji nontrivial geometry.
Further investigations in this directions are subject afent investigations.

The results obtained from six inelastic modes and for thearopic microstructure
examined are promising. The good agreement between refecemputations found by
Michel, Suquet and Roussette [11, 12, 13] for two-dimenraigmoblems can be con-
firmed for three dimensions and more complex microstrusture
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