T. Böhlke, S. Wulfinghoff, E. Bayerschen

Single Crystal Gradient Plasticity – Part III
Outline

Motivation

Dislocation continuum theories – overview

The concept of lifted curves

Modelling of pile-ups

Numerical results

Conclusion and Outlook
Literature

- **Fundamental dislocation theory**
 e.g. Taylor (1934); Orowan (1935); Schmid and Boas (1935); Hall (1951); Petch (1953)

- **Kinematics and crystallographic aspects of GNDs**
 Nye (1953); Bilby, Bullough and Smith (1955); Kröner (1958); Mura (1963); Arsenlis and Parks (1999)

- **Thermodynamic gradient theories**
 e.g. Fleck et al. (1994); Steinmann (1996); Menzel and Steinmann (2001); Liebe and Steinmann (2001); Reese and Svendsen (2003); Berdichevski (2006); Ekh et al. (2007); Gurtin, Anand and Lele (2007); Fleck and Willis (2009); Bargmann et al. (2010); Miehe (2011)

- **Slip resistance dependent on GNDs and SSDs**
 e.g. Becker and Miehe (2004); Evers, Brekelmans and Geers (2004); Cheong, Busso and Arsenlis (2005)

- **Micromorphic approach**
 e.g. Forest (2009); Cordero et al. (2010); Aslan et al. (2011)

- **Continuum Dislocation Dynamics**
 e.g. Hochrainer (2006); Hochrainer, Zaiser and Gumbsch (2007); Hochrainer, Zaiser and Gumbsch (2010); Sandfeld, Hochrainer and Zaiser (2010); Sandfeld (2010)
Dislocation Microstructure

Spiral source Cell structures at different deformation stages Single dislocations

Important features of the microstructure
- Total line length/density
- Dislocation sources
- Dislocation motion/transport
- Lattice distorsion
Classical Continuum Dislocation Measures

Total line length per unit volume

\[\rho = \frac{\Delta l_{\text{tot}}}{\Delta V} \]

Typical (local) evolution law:

\[\partial_t \rho = f(\dot{\gamma}, \rho) \]

Transport neglected!

Nye’s dislocation density tensor

\[\alpha = \text{curl} \left(H^p \right) \]

SSDs neglected!

\(H^p \): plastic displ. gradient
Smooth Dislocation Bundles

Mura (1963)

Dislocation density vector

\[\kappa := \rho e_l \]

Effective 'Number' of penetration points

\[N_{\text{eff}} = \int_A \kappa \cdot d\alpha, \]

Dislocation flux into \(A \)

\[\dot{N}_{\text{eff}} = - \int_{\partial A} (\kappa \times \nu) \cdot e_T \, ds, \]

\[\Rightarrow \partial_t \kappa = - \text{curl} (\kappa \times \nu) \]

Closed evolution equation

Holds if nearby dislocations are parallel!

How to treat non-parallel dislocations?
Concept of lifted dislocations

Hochrainer (2006); Hochrainer, Zaiser and Gumbsch (2007)

If curvature depends on position and orientation $k = k(x_1, x_2, \varphi, t)$:

Adjacent lifted dislocations are parallel!

Lift the dislocations according to their local orientation φ

Lifted parallel curves
Concept of lifted dislocations

Hochrainer (2006); Hochrainer, Zaiser and Gumbsch (2007)

Density vector of lifted dislocations

\[\kappa^I = \rho^I e^I \]

\(\rho^I \): Density of lifted dislocations

\(e^I \): line direction

Velocity of the lifted dislocations

\[V = \nu + a \vartheta e_3 \]

\(\nu \): real dislocation velocity

\(\vartheta \): angular velocity

Evolution equation (by analogy)

\[\partial_t \kappa^I = -\text{curl} (\kappa^I \times V) \]

Planar projection of \(\kappa^I \)

Derivation of orientation dependent density \(\rho^\varphi (x_1, x_2, \varphi, t) = a \kappa^I \cdot e^I \)

Total dislocation density

\[\rho(x_1, x_2, t) = \int_0^{2\pi} \rho^\varphi d\varphi \]
Continuum Dislocation Dynamics (CDD)

Evolution equation of lifted dislocation density vector

\[\partial_t \kappa^{II} = - \text{curl} (\kappa^{II} \times \mathbf{V}) \]

\[\kappa^{II} = \frac{\rho}{a} e_l + \rho \varphi k_e_3 \]

Equivalent: Evolution equations of density \(\rho^\varphi \) and curvature \(k \)

\[\partial_t \rho^\varphi = - \text{div} (\rho^\varphi \mathbf{v}) - \partial_\varphi (\rho^\varphi \partial_\varphi) + \rho^\varphi k \nu \]

\[\partial_t (\rho^\varphi k) = - \text{div} (\rho^\varphi k \nu - \rho^\varphi \partial_\varphi e_l) \]

Averaged/Simplified Theory (sCDD)

Averaged field variables

\[\rho(x_1, x_2, t) = \int_{0}^{2\pi} \rho^\varphi d\varphi \]

\[\bar{\rho}k(x_1, x_2, t) = \int_{0}^{2\pi} \rho^\varphi k d\varphi \]

\[\kappa^\perp = \int_{0}^{2\pi} \rho^\varphi e_\nu d\varphi \]

Averaged evolution equations

\[\partial_t \rho = - \text{div} (\kappa^\perp \nu) + \bar{\rho}k \nu \]

\[\partial_t \bar{\rho}k = - \text{div} (\bar{\rho}k/\rho \nu \kappa^\perp + \rho/2 \nabla_\rho \nu) \]
Comparison of Dislocation Theories

Local density evolution models
- explicit annihilation terms
- parameter calibration required
- dislocation transport neglected

Gradient plasticity / GND-based models
- \(\alpha = \text{curl}(H^p) \)
- no information on SSDs

Simplified Continuum Dislocation Dynamics (sCDD)
- SSDs are naturally included
- here: explicit annihilation not included (yet)

Phenomenological hardening approach required
- \(\tau^C = \tau^C(\rho, ...) \)
- no parameter calibration for kinematics

Computation of strain gradients / pile-ups
- accounts explicitly for dislocation transport
- dislocation curvature information

All dislocations are included

\(\partial_t \rho = \text{div}(\ldots) + \ldots \)
Coupling to Crystal Plasticity

Single slip framework
- Additive decomposition
- Plastic distortion
- Elastic strain
- Stress
- Resolved shear stress

Coupling equations
- Orowan equation
- Overstress modell
- Taylor hardening

PDEs
\[
\begin{align*}
\text{div} (\sigma) &= 0 \\
\partial_t \rho &= -\text{div} (\kappa^\perp \nu) + \rho k \nu \\
\partial_t \rho k &= -\text{div} \left(\frac{\rho k}{\rho} \nu \kappa^\perp + \rho/2 \nabla_p \nu \right)
\end{align*}
\]
Dislocation Starvation Simulation 1

Initial conditions

\[
\rho(x, t = 0) = \rho_0 = \text{const.}
\]

\[
k(x, t = 0) = k_0 \gg 1/L
\]

\[
\Rightarrow \rho k(x, t = 0) = \rho_0 k_0
\]

High viscosity required for stabilization

⇒ Homogeneous distribution of small loops

Videos 1, 2, 3

Force displacement curve
Dislocation Starvation Simulation 2

Initial conditions

\[\rho(x, t = 0) : \text{concentrated at center} \]
\[k(x, t = 0) = k_0 \gg 1/L \]

Videos 4, 5

⇒ Inhomogeneous distribution of small loops

Figure: Initial configuration

Figure: After loading
Numerical results

Initial conditions

\[\rho(x, t = 0) = \rho_0 = \text{const.} \]

\[k(x, t = 0) = k_0 \gg \frac{1}{L} \]

\[\Rightarrow \rho k(x, t = 0) = \rho_0 k_0 \]

⇒ Homogeneous distribution of small loops

![Force displacement curve](image)
Conclusion

- There is a need for a continuum theory of dislocations to bridge the scales
- Concept of lifted curves → physically based continuum theory
- Takes into account
 - SSDs & GNDs
 - transport
 - curvature
- Fits into crystal plasticity framework
- Facilitates the simulation of effects like dislocation starvation
Thank you for your attention

The support of the German Research Foundation (DFG) in the project "Dislocation based Gradient Plasticity Theory" of the DFG Research Group 1650 "Dislocation based Plasticity" under Grant BO 1466/5-1 is gratefully acknowledged.