A multi-scale approach to plasticity: the *Continuum Dislocation Dynamics* theory

Stefan Sandfeld *)
Institute of Materials Simulation WW8
University of Erlangen-Nürnberg (FAU)

GAMM summer school *Multiscale Material Modeling*,
Bad Herrenalb, 2012

*) in collaboration with: Michael Zaiser (University of Erlangen-Nürnberg), Thomas Hochrainer (University of Bremen) and Peter Gumbsch (Fraunhofer Institute IWM)

Part 0: Introduction

Part I: Overview small-scale plasticity

Part II: The *Continuum Dislocation Dynamics* theory
1. Theoretical foundations
2. Numerical examples and validation
3. Outlook

Part III: Introducing... the DFG Forschergruppe ‘Dislocation-based Plasticity’
Motivation: is COPPER = copper?

✓ centimeter-sized specimen can be used to predict meter-sized components

✗ Material behavior in small dimensions is not scale-invariant anymore

● How to predict plastic and hardening behaviour of components and devices?
● Scale of interest: several µm sizes becomes more and more important
● Influence of dislocations not negligible for:
 size effects, stochastic effects, physical hardening models

higher accuracy, less assumptions computational efficiency
Stefan Sandfeld:
*A multiscale approach to plasticity: the Continuum Dislocation Dynamics theory,
GAMM summer school ‘Multiscale Material Modeling’, Bad Herrenalb, Germany, 2012*

- How to predict plastic and hardening behaviour of components and devices?
- Scale of interest: several µm sizes becomes more and more important
- Influence of dislocations not negligible for:
 - size effects, stochastic effects, physical hardening models

The Continuum Dislocation Dynamics Theory (CDD) provides higher accuracy, less assumptions and computational efficiency compared to MD and DDD approaches.

- **MD**: movement of discrete lines
- **DDD**: internal stresses → analytical expressions
- **CDD**: evolution of dislocation density/curvature
 - internal stresses → statistics
 - computational cost independent of number of lines (density!)

DDD
- discrete dislocation dynamics
 - movement of discrete lines
 - internal stresses → analytical expressions
 - limit: number of (interacting) lines

CDD
- continuum dislocation dynamics
 - evolution of dislocation density/curvature
 - internal stresses → statistics
 - computational cost independent of number of lines (density!)

Phenomenological C.T.s
1. Macroscopic system
- boundaries and boundary conditions (BCs)
- external load: strain rate etc

2. Project stresses to slip planes from...
- external load, BCs (from 1)
- plastic strain (from 5)

3. Constitutive equations
- statistical model of microscopic stresses (dislocation interaction)
- dislocation velocity
\[\tau = M : \sigma \]
\[v \propto \tau_i(x) \]

4. Continuum Dislocation Dynamics (CDD)
- Evolve dislocation microstructure \((\alpha^q) \)
- Time integration \(\rightarrow \) plastic slip \(\gamma \)

5. Homogenization
plastic slip \(\gamma \) on glide planes + compatibility condition
\(\rightarrow \) continuous plastic strain \(\varepsilon^{pl} \)
(macroscopic crystal)

For the next derivations and benchmark tests:
• we assume the dislocation velocity to be given
• no short range/long range stresses and interactions from dislocation microstructure
• this is unrealistic but makes sense as validation for the dislocation kinematics (=movement of lines or density)
The classical continuum theory of dislocations (Kröner, Nye, Bilby, Kondo in the ~1950s)

KRÖNER-NYE dislocation density tensor α:

- $\alpha = \text{curl} \beta^\text{pl}$: inhomogeneous plastic distortion causes a dislocation density
- $\text{div} \alpha = 0$: dislocation lines do not start or end inside the crystal
- $\partial_t \alpha = \text{curl} \partial_t \beta^\text{pl}$
 - $= \text{curl}(-\nu \times \alpha)$: evolution equation – generally not closed
 - ... - closed only for special case

Already Kröner was well aware of ...
- the limitations of the dislocation density tensor
- the gap between dislocation physics and continuum plasticity in general

Limitations of the *averaged* density tensor $\alpha = \langle \alpha_i \rangle$
KRÖNER-NYE dislocation density tensor α:

\[
\alpha = \text{curl } \beta^{pl}
\]

inhomogeneous plastic distortion causes a dislocation density

\[
\text{div } \alpha = 0
\]
dislocation lines do not start or end inside the crystal

\[
\partial_t \alpha = \text{curl } \partial_t \beta^{pl}
\]
evolution equation – generally not closed

\[
= \text{curl}(-v \times \alpha)
\]
... - closed only for special case

Limitations of the \textit{averaged} density tensor $\alpha = \langle \alpha \rangle$

In general, α does not fulfill $\partial_t \beta^{pl} = \text{curl}(-v \times \alpha)$ because...

\[
\partial_t \alpha = -\text{curl}(\partial_t \beta^{pl}) = -\text{curl}\left(\sum_c \delta \cdot v \times \xi_c \otimes b\right) = -\text{curl}\left(\sum_c \langle \delta \cdot v \rangle \times \langle \xi_c \rangle \otimes b\right)
\]

Applicability of the \textit{averaged} Kröner-Nye tensor:

- OK: only 1 dislocation present (discrete case)
- OK: smooth line bundles with same tangent vector ξ and velocity v
- BUT in general: averaging volume contains lines of different orientation
 \[\rightarrow \text{averaging yields } \rho_{\text{GND}} < \rho \]
2D Continuum dislocation dynamics (Groma 1997):
continuum theory of straight parallel edge dislocations, e.g. applied to...

Model composite

Dislocation distribution with 2D-DD
Dislocation density with 2D CDD

Plastic strain with Groma CDD

FE-mesh distortion with 2D-DD

Plastic strain with a model by M. Gurtin 2002

Hochrainer’s Continuum Dislocation Dynamic (CDD) theory

(Hochrainer, Zaiser & Gumbsch, Phil. Mag. 87 (2007))

distinguish line segments according to their line orientation φ
\rightarrow lift of the line: $c(x, y) \rightarrow C(x, y, \varphi)$

average over the lift of the dislocation line ("controlled averaging")

higher-dimensional continuum field description of dislocation microstructure

continuous representation of dislocation flow
\rightarrow dislocation density tensor of 2nd order α^{ij}

Spatial dislocation loop (red) and lifted dislocation loop in the configuration space (blue)

tangent $L = \frac{dc}{ds} = \left(\frac{dc}{ds} \right) k(x)$

Two main ingredients for the 'lift':

1. generalised line direction L
 $$L_{(n, \varphi)} = (\cos \varphi, \sin \varphi, k_{(n, \varphi)})$$

2. generalised velocity V
 $$V_{(n, \varphi)} = (v \sin \varphi, -v \cos \varphi, \Theta_{(n, \varphi)})$$

with

- k: lines’ curvature
- Θ: rotational velocity
- causing a line to move in orientation direction = rotation
- basically a velocity gradient along the line
Can we obtain a closed form of the evolution equation for α^{II}?

$$\partial_t \alpha^{II} = -\text{curl} \left(\sum_C \delta cV \times \frac{dc}{ds} \otimes b \right)$$

...holds under much weaker assumptions: Dislocations in an averaging volume with same line direction...

1. must have the same curvature
2. glide with the same magnitude of velocity

KRÖNER: dislocation lines in an averaging volume must have same line direction ϕ the same velocity v

CDD side-by-side with the classical Kröner theory

<table>
<thead>
<tr>
<th></th>
<th>CDD</th>
<th>Kröner</th>
</tr>
</thead>
<tbody>
<tr>
<td>formal density</td>
<td>$\delta_c(r) = \int_c \delta(c(s)-r) , ds$</td>
<td>$\delta_c(r) = \int_c \delta(C(s)-(r, \phi)) , ds$</td>
</tr>
<tr>
<td>dislocation density</td>
<td>$\alpha_{c(r)} = \left(\sum_c \delta_c \frac{dC}{ds} \otimes b \right)$</td>
<td>$\alpha^\Pi_{(r, \phi)} = \left(\sum_c \delta_c \frac{dC}{ds} \otimes b \right)$</td>
</tr>
<tr>
<td>scalar dislocation</td>
<td>$\rho = \left| \sum_c \delta_c \frac{dC}{ds} \right|$</td>
<td>$\rho = \left| \sum_c \delta_c \frac{dC}{ds} \right|$</td>
</tr>
<tr>
<td>(average spatial/generaized)</td>
<td>$l = \left(\sum_c \delta_c \frac{dC}{ds} \right) \rho^{-1}$</td>
<td>$L = \left(\sum_c \delta_c \frac{dC}{ds} \right) \rho^{-1} = (l, k)$</td>
</tr>
<tr>
<td>line direction</td>
<td>$\alpha_{c(r)} = \rho l \otimes b$</td>
<td>$\alpha_{(r, \phi)} = \rho L \otimes b$</td>
</tr>
</tbody>
</table>
CDD side-by-side with the classical Kröner theory

<table>
<thead>
<tr>
<th>CDD</th>
<th>Kröner</th>
</tr>
</thead>
<tbody>
<tr>
<td>discrete disloc. current</td>
<td>$J^d = \sum_c \delta_c \epsilon^d \frac{dC}{ds} \otimes b$</td>
</tr>
<tr>
<td>dislocation density</td>
<td>$\alpha_{I(\phi)} = \sum_c \delta_c \frac{dC}{ds} \otimes b$</td>
</tr>
<tr>
<td>Evolution of disloc. density</td>
<td>$\partial_t \alpha_{I(\phi)} = -\text{curl} \left(J^d \right)_{\delta_c}$</td>
</tr>
</tbody>
</table>

→ both theories are very similar from a formal point of view

What do the governing equations look like?

→ if only dislocation glide in a slip plane is considered, α^{II} can be expressed in terms of scalar density ρ, $L(r, \phi)$, and average curvature k:

$$
\alpha^{II}(r, \phi) = \rho(r, \phi) L(r, \phi) \otimes b = \left[\rho(r, \phi) \cdot l^x(\phi) \right] \otimes b
= \left[\rho(r, \phi) \cdot l^y(\phi) \right] \otimes b
= \left[\rho(r, \phi) \cdot k(r, \phi) \right]
$$

with $r \in \mathbb{R}^2$, $\phi \in [0..2\pi)$

\begin{align*}
l^x(\phi) &= \cos \phi \\
l^y(\phi) &= \sin \phi
\end{align*}

components of tangent to the spatial loop

ρ: scalar density

k: average curvature

L: higher-dimensional line direction

b: Burgers vector
evolution of dislocation density tensor 2^{nd} order α^{II} can be substituted by two scalar evolution equations:

1) evolution of scalar density ρ

$$\partial_t \rho = -\text{div} (\rho v) - \partial_x (\rho \vartheta) + \rho v k$$

2) evolution of mean dislocation curvature k

$$\partial_t k = -v k^2 + \nabla_L (\vartheta) - \nabla_V k$$

- ρ and k both live in the configuration space $\mathbb{R} \times \mathbb{R} \times S$
- v must be given, e.g. $v = \frac{b}{B} \left(\tau_{\text{m}} - \tau_b \pm \tau_f \right)$ if $|\tau_{\text{m}} - \tau_b| \geq \tau_f$

→ closure problem of dynamics

1) Sandfeld et al., Phil. Mag. (90) 2010
Exploring the 2D system: interpreting the components of the evolution equations

evolution of curvature: \(\partial_t k = -vk^3 + \nabla_z (\theta) - \nabla_z (k) \)

- \(\partial_t k = -vk^3 \) ... change of curvature as for an expanding/shrinking circular loop
- \(\partial_t k = \cdots + \nabla_z (\theta) \) ... change of rotational velocity along the lifted line (2nd derivative of velocity)
- \(\partial_t k = \cdots \nabla_z (k) \) ... curvature change in direction of motion (Euler)

Expanding loop with anisotropic velocity, \(v = f(\phi) \)

- \(\phi \): rotational velocity (vertical component of generalized velocity)
- \(-\phi = \nabla_z (\psi) = \cos \psi \partial_z v - \sin \psi \partial_z v + k \partial_z v \)
- for \(v = \text{const} \) (expanding/shrinking loop):
 \(\partial_z (\psi) = 0 \)
- anisotropic velocity \(v = f(\phi) \):
 \(\partial_z (\psi) \neq 0 \! \)
Expanding loop: anisotropic velocity, $v = f(\varphi)$

\[\dot{x} = -\text{div}(\sigma) \quad \dot{\varphi} = \sigma \theta + \sigma v, \quad \dot{\varphi} k = -vk^2 - \nabla \varphi \cdot \nabla \varphi \]

(spatial) velocity along the line

rotation of a line segment (red) during loop expansion due to anisotropic velocity law

Expansion of a dislocation loop in an anisotropic stress field

Initial density distribution:

Evolved density distribution:

(a) scalar density $\rho(x,y) = \int_0^L \rho(x,y) \, dy$

(b) projected density $\rho(x,\varphi) = \int_0^L \rho(x,y) \, dy$

(c) scalar density $\rho(x,y)$ at $t = 180$

(d) projected density $\rho(x,\varphi)$ at $t = 180$
Stefan Sandfeld:
A multiscale approach to plasticity: the Continuum Dislocation Dynamics theory,
GAMM summer school 'Multiscale Material Modeling', Bad Herrenalb, Germany, 2012

Boundary conditions in CDD – analyzing the path of dislocations

in fact, we only have density representing a loop distribution, there are NO discrete dislocation loops!

Boundary conditions in CDD – analyzing the path of dislocations

x-phi plane:

x-y plane:
Quadratic ‘grain’ with impenetrable boundaries

Initial values:
- circular dislocation loops, radius $r = 2 \mu m$
- all loops stem from e.g. Frank-Reed sources (\rightarrow plastic slip)
- total density $\rho = 0.1 \cdot 10^{13} m^{-2}$

Velocity and boundaries:
- $v = \text{const}$ in the inner part
- $v \rightarrow 0$ in the boundary region

Boundary conditions are realized as flux boundary conditions

Dislocation field quantities for the left half of a quadratic cell ($l=20\mu m$) with impenetrable boundaries:

- total density ρ_t [$10^{13} m^{-2}$]
- GND density α [$10^{13} m^{-2}$]
- curvature k [μm^{-1}]
- plastic slip γ [-]

Initial values:
- circular dislocation loops, radius $r = 2 \mu m$
- total density $\rho = 0.1 \cdot 10^{13} m^{-2}$

Velocity and boundaries:
- constant velocity in the inner part
- velocity $\rightarrow 0$ in the boundary region
Quadratic 'grain' with impenetrable boundaries

Dislocation field quantities for the left half of a quadratic cell (l=20μm) with impenetrable boundaries:

Initial values:
- circular dislocation loops, radius \(r = 2 \mu m \)
- total density \(\rho = 0.1 \cdot 10^{13} m^{-2} \)

Velocity and boundaries:
- constant velocity in the inner part
- velocity \(\to 0 \) in the boundary region

Quadratic 'grain' with impenetrable boundaries

Dislocation field quantities for the left half of a quadratic cell (l=20μm) with impenetrable boundaries:

Initial values:
- circular dislocation loops, radius \(r = 2 \mu m \)
- total density \(\rho = 0.1 \cdot 10^{13} m^{-2} \)

Velocity and boundaries:
- constant velocity in the inner part
- velocity \(\to 0 \) in the boundary region
Stefan Sandfeld:
A multiscale approach to plasticity: the Continuum Dislocation Dynamics theory,
GAMM summer school ‘Multiscale Material Modeling’, Bad Herrenalb, Germany, 2012

ρ, \bar{k}, $|\kappa|$, γ

Blanckenhagen et al., *Acta Mater* 52, 2004

Simplifying the higher-dimensional CDD
Reduction of degrees of freedom by integration over orientation space (HOCHRainer et al. 2009, AIP Conf. Proc. 1168(1))

\[
\alpha^\Pi(r, \phi) = \rho(r, \phi) L(r, \phi) \otimes b = \begin{cases}
\rho(r, \phi) \cdot l^x(\phi) \\
\rho(r, \phi) \cdot l^y(\phi) \\
\rho(r, \phi) \cdot k(r, \phi)
\end{cases} \otimes b
\]

with \(r \in \mathbb{R}^2 \) and \(\phi \in [0..2\pi) \)

\[
l^x(\phi) = \cos \phi \\
l^y(\phi) = \sin \phi
\]

\[
\rho^1(r) = \int_0^{2\pi} \rho(r, \phi) \, d\phi, \\
q^1(r) = \int_0^{2\pi} \rho(r, \phi) \cdot k(r, \phi) \, d\phi, \\
\kappa^1(r) = \int_0^{2\pi} l^x(\phi) \rho(r, \phi) \, d\phi, \\
\kappa^2(r) = \int_0^{2\pi} l^y(\phi) \rho(r, \phi) \, d\phi
\]

\(\in \mathbb{R}^2 \)

Stefan Sandfeld:
A multiscale approach to plasticity: the Continuum Dislocation Dynamics theory,
GAMM summer school 'Multiscale Material Modeling', Bad Herrenalb, Germany, 2012
Reduction of degrees of freedom by integration over orientation space (HÖCHRAINER et al. 2009, AIP Conf. Proc. 1168(1))

\[\alpha^{II}(r, \varphi) = \rho(r, \varphi) L(r, \varphi) \otimes b = \begin{cases} \rho(r, \varphi) \cdot l^x(\varphi) \\ \rho(r, \varphi) \cdot l^y(\varphi) \\ \rho(r, \varphi) \cdot \kappa(r, \varphi) \end{cases} \otimes b \quad \text{with} \quad r \in \mathbb{R}^2, \quad \phi \in [0..2\pi], \quad l^x(\varphi) = \cos \varphi, \quad l^y(\varphi) = \sin \varphi \]

\[\kappa^1(r) = \int_{0}^{2\pi} l^x(\varphi) \rho(r, \varphi) \, d\varphi, \quad \kappa^2(r) = \int_{0}^{2\pi} l^y(\varphi) \rho(r, \varphi) \, d\varphi \]

11 and 12-components of Kröner tensor \(\alpha \)

Derivation of simplified evolution equations:

\[\partial_t \alpha^{II}(r, \varphi) = -\operatorname{curl}(V(r, \varphi) \times \alpha^{II}(r, \varphi)) \]

Assumption: \(v \) and \(k \) are orientation independent

\[\partial_t \rho^t = -\left(\partial_x (v k^2) - \partial_y (v k^1) \right) + v \rho^t \kappa \]
\[= -\text{div}(v \kappa^t) + v \rho^t \kappa \]

\[\partial_t \kappa = \left(-\partial_y (v \rho^t), -\partial_x (v \rho^t) \right) \]

\[\partial_t \kappa = -v \kappa^2 - \frac{1}{2} \left(\rho^t + \rho^G \right) \nabla_k v + \frac{\rho^t - \rho^G}{\rho^t} \nabla_{\rho^t} v - \frac{1}{\rho^t} (k \nabla_{k^t} v - v \nabla_{k^t} \kappa) \]
dislocation velocity \(v = \frac{b}{B} \tau_{\text{res.}} \) with \(b \): Burgers vector, \(B \): drag coefficient

\[
\tau_{\text{resulting}} = \begin{cases}
\text{sgn}(\tau_0)\left(|\tau_0| - |\tau_y|\right) & \text{if } |\tau_0| > |\tau_y| \\
0 & \text{otherwise}
\end{cases}
\]

where \(\tau_0 = \tau_{\text{ext}} + \tau_{\text{sc}} - \tau_b - \tau_{\text{lt}} \)

\(\tau_{\text{ext}} \): resolved shear stress (from elastic BVP, e.g. strain rate)
\(\tau_{\text{sc}} \): self-consistent stress (from elastic eigenstrain problem)

\(\tau_b \approx \nabla \rho^6 \): back stress (short range interaction) (proportional to gradient of GND density)

\(\tau_b = Gb^2k \): line tension (short range interaction) (proportional to average curvature)

\(\tau_y \approx \rho^{1/2} \): yield stress (proportional to square root of total density)

Homogeneous loop distribution with Taylor-type hardening

\[
\frac{\partial k}{\partial r} = \rho_0 k, \quad \frac{\partial k}{\partial \gamma} = \frac{2\pi}{\rho_0 k} \int \mu v d\varphi, \quad \frac{\partial \gamma}{\partial t} = \int (0.5\mu b) \sqrt{\rho(t)} d\tau(t)
\]

where \(\int \cdot \cdot \cdot d\varphi = \begin{cases} \cdot \cdot \cdot & \text{for } \cdot > 0 \\
0 & \text{otherwise.}
\end{cases} \)

- homogeneous distribution of circular loops, radius \(r \)
- quasi-static loading conditions
- homogeneous distribution of parallel glide planes
- different initial dislocation radii / const. initial density \(\rho_0 = 5 \cdot 10^{11} \text{ m}^{-2} \)
- \(\mu = 10 \text{ GPa}, B = 50 \text{ Pa s}, b = 0.22 \text{ nm} \)
Bending of a thin, single crystalline film

Figure 1: Geometry

- • "flux" boundary conditions similar to DDD
- • 2 slip systems
- • 2 microscopic stress components:
 - Taylor-type yield stress and back stress
- • quasi-static load steps

Figure 2: size effect and strain profiles

- • only 2 free parameter for Taylor-type yield stress and back stress (quality: almost universal constants)
- • strain profiles and size-effect reproduced (match with experiments and DDD)

Mechanical annealing (‘dislocation starvation’) :

- compression test of a nano pillar
- 2 symm. slip systems
- initially homogenous loop distribution
- open boundaries
- Taylor-type flow stress

- initially: elastic response (regime I)
- plastic activity = loop expansion/outflux (regime II)
- all dislocations left = elastic response (regime III)

Total dislocation density

Intermittent plastic behavior:
Dislocation nucleation within the CDD theory
• **Point of departure for derivation:** higher-dimensional CDD

• **Extra source-terms:**
 \[\partial_t \rho_{src} = \dot{q} k_{src} \quad \text{and} \quad \partial_t k_{src} = \frac{\dot{q}}{\rho} k_{src} (k_{src} - k) \]
 \[\dot{q} : \text{rate of plastic deformation due to sources} \]
 \[k_{src} : \text{initial curvature of newly formed loops} \]

Averaging the above CDD evolution equations yields the **simplified CDD equations with sources:**

\[
\begin{align*}
\partial_t \rho^t &= -\text{div}(v\kappa^t) + v\rho^t \kappa + \dot{\rho}_{src} \\
\partial_t \kappa &= (-\partial_y(v\rho^t + \dot{\rho}_{src}/\kappa_{src})), -\partial_x(v\rho^t + \dot{\rho}_{src}/\kappa_{src}) \\
\partial_t \kappa^t &= -v\kappa^2 - \frac{1}{2} \left(\frac{\rho^t + \rho^G}{\rho^t} v_l l + \frac{\rho^t - \rho^G}{\rho^t} v_l l v \right) - \frac{1}{\rho^t} \left(\kappa \nabla_{\kappa^t} v - v \nabla_{\kappa^t} \kappa \right) \\
&\quad \ldots + \dot{\rho}_{src} (k_{src} - \kappa) - \Delta \dot{\rho}_{src} / (2k_{src})
\end{align*}
\]

Two possible types of nucleation processes in CDD

1. **Quasi-discrete sources**
 - similar to the discrete Frank-Read sources
 - ...but: initial bowing-out is not considered
 - continuum source emitts density with curvature and plastic slip
 \(\Delta \rho_{src} \) instead of \(\dot{\rho}_{src} \) !
 - activation of the source: *average* shear stress under source area > critical shear stress
Two possible types of nucleation processes in CDD:

2. Continuous “source field"

- average description of many Frank-Read sources
- each point of the continuum: influx of density ($\dot{\rho}_S$) with certain curvature (and plastic slip)

Temporal averaging results in:
- no discrete activation
- (after some threshold...) influx proportional to local stress

\[\dot{\rho}_S = \rho v \]

- System:
 - 0-dimensional = homogeneous in x and y direction
 - constant strain rate $\dot{\epsilon} = 10^3 s^{-1} \Rightarrow \dot{\epsilon}_{ext} = G\dot{\epsilon}$
 - material parameter: $b=0.256$ nm, $B=5.6GPa/\mu m$, $E=128GPa$, $v=0.33$, $T=4GPa/nm^2$, $a=0.4$

- Velocity is a function of τ_{ext}, $\tau_{lt} = Tk$ and $\tau_y = aGb\sqrt{\rho}$

- Evolution equations ($\dot{\rho}_S$ such that 1 loop is emitted upon activation)
 - source inactive:
 \[\dot{\rho}_i = \nu_0 \dot{\rho}_i \]
 \[\dot{k} = -v\dot{k}^2 \]
 \[\dot{\gamma} = \nu_0 |\gamma| \]
 - source active:
 \[\dot{\rho}_i = \nu_0 \dot{\rho}_i + \dot{\rho}_s \]
 \[\dot{k} = -v\dot{k}^2 + \frac{\dot{\rho}_s (\kappa - k)}{\rho_i} \]
 \[\dot{\gamma} = (\nu_0 + \dot{\rho}_s / k_i) |\gamma| \]

- Initial conditions:
 - $\rho_{i,0} = 10^{12} m^{-2}$ $k_0 = 0.005$ nm ($r_0 = 200$ nm)
 - $\rho_i = 10^{12} m^{-2}$ $k_0 = 0.00455$ nm ($r_0 = 220$ nm)

- Source parameters:
 - $\tau_{out} = \frac{T}{b \cdot l_{sc}} = 58.85$ MPa
Stefan Sandfeld:
A multiscale approach to plasticity: the Continuum Dislocation Dynamics theory,
GAMM summer school 'Multiscale Material Modeling', Bad Herrenalb, Germany, 2012

Curvature k and density ρ change over time t.

Resulting

- τ_{ext} increases while simultaneously...
- τ_{res} decreases \rightarrow source gets shut down
- $\tau_{res} > \tau_{ext}$: \rightarrow source firing: ρ_{tot} and k increase
- $\tau_{res} = \tau_{ext} - \tau_{lt} - \tau_{yield}$ changes due to evolving microstructure

Loops are just a sketch, we use DENSITY!!

(a) total density ρ and average curvature k

(b) stress components: yield stress γ_y, line tension γ_l and resulting stress τ_{res}

(c) evolution of accumulated plastic strain γ

(d) stress $\gamma_l + \gamma_y$ vs plastic strain
Quasi-discrete sources: the system

- circular slip plane (radius R) with constant resolved shear stress τ_{ext}
- pure edge source, source length l_{src}
- critical stress for activation $\tau_{\text{crit}} = \frac{2Gb}{l_{\text{src}}}$
- line tension (simplified): $\tau_{\text{lt}} = Gb^2k$ with the dislocations’ curvature $k=1/r$
- pure edge source: loop diameter $\sim 1.5 \times l_{\text{src}}$

Here, the back stress plays an important role for activating the source.
Stefan Sandfeld:
A multiscale approach to plasticity: the Continuum Dislocation Dynamics theory,
GAMM summer school ‘Multiscale Material Modeling’, Bad Herrenalb, Germany, 2012

J. Senger 2009, PhD thesis
...some qualitative comparisons

Snapshots of density evolution in a 2D source distribution
A multiscale approach to plasticity: the Continuum Dislocation Dynamics theory, GAMM summer school 'Multiscale Material Modeling', Bad Herrenalb, Germany, 2012

Stefan Sandfeld:

snapshots of accumulated plastic slip in a 2D source distribution

Summary and Outlook

- CDD contains the kinematics of curved lines - line curvature is THE key ingredient!
- Intermittent plastic activity as well as continuous fluxes can be represented in a straightforward manner
- Boundary conditions can be easily included
- hdCDD even allows for anisotropic velocity law (e.g. edge/screw anisotropy or mixed FR source)

- More work to be done on systematically simplifying evo. eqns + benchmarking
- Full FE coupling with full FCC slip systems
- Analyzing DDD configurations to extract internal stresses, short/long-range stress