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We propose a dislocation density measure which is able to account for the
evolution of systems of three-dimensional curved dislocations. The definition and
evolution equation of this measure arise as direct generalizations of the definition
and kinematic evolution equation of the classical dislocation density tensor. The
evolution of this measure allows us to determine the plastic distortion rate in a
natural fashion and therefore yields a kinematically closed dislocation-based
theory of plasticity. A self-consistent theory is built upon the measure which
accounts for both the long-range interactions of dislocations and their short-
range self-interaction which is incorporated via a line-tension approximation. A
two-dimensional kinematic example illustrates the definitions and their relations
to the classical theory.

1. Introduction

It is a central aim of current materials modelling to build effective continuum

theories directly on averages of the corresponding discrete objects. In the case of

crystal plasticity the most important objects to be looked at are dislocations and their

dynamics. Recently averaging procedures adapted from the statistical mechanics of

interacting many-particle systems have successfully been used to deduce a continuum

description for simplified dislocation systems consisting of straight parallel edge

dislocations of both signs and moving on a single-slip system [1]. This corresponds to

dealing with the dynamics of signed point particles moving in a plane. The evolution

equations for the corresponding densities �� therefore have the form

@t�� ¼ �div ��t�ð Þ with t� denoting the dislocation velocity. These kinematic

evolution equations, which in the present form have the structure of
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conservation laws, are in fact the fundament upon which the statistical mechanics

methods are builty. Consequently, in order to transfer the statistical mechanics

approach to three-dimensional curved dislocations, the definition of a mathemati-

cally sound dislocation density measure and the formulation of its kinematic

evolution law are essential.

The classical dislocation density tensor a as introduced by Kröner [2] constitutes

a three-dimensional dislocation density measure which considers the line-like

character of the dislocations. In fact it yields a proper pseudo-continuum description

for single dislocations and a continuum description of special dislocation

distributions. However, it is well known that upon averaging a often only reflects

a small fraction of all dislocations and that therefore no closed plasticity theory can

be built upon it. Indeed, already the above-mentioned two-dimensional theory

exceeds the scope of the dislocation density tensor which would in that case

correspond to the net density �¼ �þ� ��. It is obvious that for a closed description

which is equivalent to the evolution of the two ‘signed’ densities the evolution

equation for � has to be accompanied by a second equation for the total dislocation

density �¼ �þþ ��.

A rather natural generalization of the concept of two signed densities (for

straight parallel dislocations) to more general dislocation configurations is to

introduce a continuous directional space and a density function � on the sphere of

directions at each point of the crystal. This concept goes back to Kosevich [3] and

also yields the back-bone for the statistical mechanics theory of El-Azab [4], who

additionally classifies dislocations by their velocity. It was shown in [5] that the

associated dislocation density measures (in the following denoted as ‘statistical’

measures; the motivation for this terminology will become apparent later) and their

generalizations can yield a closed plasticity theory only in very special situations.

In [6] we proposed a different, ‘deterministic’ generalization of the classical

dislocation density tensor which is akin to the above-mentioned statistical ones but

additionally considers the local average curvature of dislocations of a fixed

orientation. The main purpose of the current paper is to motivate the definition

and evolution equation of this dislocation density measure, and to relate them to the

classical theory and the cited statistical approaches. We will discuss why the

associated evolution equation constitutes an appropriate ‘continuity equation’

(conservation law) for curved lines. As a first step towards a dynamic theory we will

show how a fully three-dimensional self-consistent (or mean field) theory of plasticity

may be built upon the presented dislocation density measure. Finally, we give a

detailed two-dimensional calculation to illustrate the definitions and equations.

A simple example problem is analyzed, but we refer the reader to [7] (this issue) for

an application of the present theory to size-effects in thin film plasticity.

A mathematically sound definition of the generalized dislocation density measure

requires using the language of differential forms because higher dimensional

yOnce a kinematic evolution equation is established, the crucial physical problem in statistical
modelling is to determine the velocity � and establish its relation with the dislocation densities.
In the cited case it turns out that, under the assumption of overdamped dislocation motion,
the velocity can be written as a functional of the dislocation densities which encompasses
several stress contributions accounting for different kinds of dislocation interactions.

1262 T. Hochrainer et al.
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generalizations of the cross-product � and the curl operator are needed (see [6] for a

discussion of other motivations for the use of differential forms in the present

context). Consequently we will use the language of differential forms throughout the

whole paper, including the presentation of the classical theory, but include for

comparison the standard formulation where appropriate. As the definitions and

notation used are not widely known outside the differential geometry community, we

give a collection of definitions and standard results in appendix A. At the beginning

of appendix A we also discuss the understanding of tangent vectors as differential

operators acting on functions and introduce the corresponding concepts, definitions

and notation. However, we avoid in this work the use of more elaborate concepts

from differential geometry which are in fact needed to formulate some of the results

in a more precise and general fashion, and refer the interested reader to [5] for a

rigorous treatment. Instead we rely, wherever possible, on geometrical and physical

arguments to motivate the use of certain mathematical formulations and to explain

the implications of apparently formal mathematical choices.

2. Current dislocation density measures

In this section we first give a detailed review of the classical dislocation density tensor

and translate the classical results into the language of differential forms. Afterwards,

we briefly discuss statistical dislocation density measures found in the literature

before we introduce the generalized deterministic dislocation density measure and its

evolution equation. We will then recover the classical theory from the generalized

one and finally interpret the evolution equation as a conservation law.

2.1 The classical dislocation density tensor

The classical dislocation density tensor was introduced independently and with

slightly different accents by Nye [8] and Kröner [2] as well as in a much more formal

way by Kondo [9] and Bilby et al. [10]. In the following we use the definitions and

notation of Kröner [11].

It was set out in [6] why the classical dislocation density tensor a naturally arises

as a vector-valued 2-form. This was already appreciated by Kröner [11]. Considering

a as a 2-form means that we prefer to work with the third-rank tensory

a ¼ �ij
kdxi ^ dxj � @k;

which is antisymmetric in the two lower indices, instead of the more commonly used

rank-two tensor

a ¼ �ij@i � @j:

yHere and in the following we adopt the Einstein summation convention for automatically
contracting over pairs of upper and lower indices.

A three-dimensional continuum theory of dislocation systems 1263
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Both tensors are related via the totally antisymmetric symbols �ijk and �
ijk by

�ij
k¼ �lij�

lk and �ij ¼ �ikl�
j
kl:

As usual in the theory of Kröner we transfer differential operators from vector

calculus to tensor calculus by applying them only to specific indices of a tensor in

Cartesian coordinates. For example, the divergence of a is traditionally defined by

div a :¼ @i�
ij@j: ð1Þ

Analogously the usual calculus of differential forms can be transferred to

vector-valued differential forms by applying them to the ‘lower’ indices as for

example

da ¼ d�ij
k^ dxi ^ dx j � @k;

which is equivalent to equation (1). We remark that both definitions in this form rely

on the use of standard coordinates.

Analogous to the understanding of a as a vector-valued 2-form, the plastic

distortion tensor bpl shall be viewed as a vector-valued 1-form bpl ¼ b
plj
i dxi � @j. The

classical definition of the dislocation density as the curl of the plastic distortion then

reads in the notation of differential forms

a ¼ curl bpl  ! a ¼ dbpl: ð2Þ

Similarly the fact that dislocations do not end inside the crystal is rewritten as

div a ¼ 0  ! da ¼ 0: ð3Þ

We remark that the conceptual difference between the vector-valued 1-form bpl and

the vector-valued 2-form a which does not clearly show up in the traditional notation

can be motivated from the fact that bpl is meaningfully integrated over curves (to

yield the enclosed Burgers vector) while a can only be meaningfully integrated over

surfaces (to yield the net Burgers vector flux through the surface). It was shown in [6]

using the concept of currents that this can be related to the fact that bpl may be seen

as representing a density of plastically sheared surfaces (where the direction and

amount of slip is given by the Burgers vector), while a represents a density of curves.

It was furthermore shown that equation (2) literally reflects the fact that dislocation

lines emerge as the boundaries of slipped surfaces, and that equation (3) is the

continuum version of dislocation lines being closed.

In the remainder of this paper, for simplicity we assume all dislocations to have

the same Burgers vector b. As a consequence, the vectorial part of the vector-valued

differential forms is constant and given by the Burgers vector. Therefore the calculus

effectively reduces to the usual calculus of differential forms and the treatment of

dislocations reduces to a theory of distributed curves. Consequently the dislocation

density tensor can be written as

a ¼ �ildV� b; ð4Þ

with a density function � and a unit vector field l which gives the local average

direction of the dislocation lines. Furthermore dV denotes the standard volume

1264 T. Hochrainer et al.
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element and ‘i’ is the operator of inner multiplication of a differential form with a

vector field, as introduced in appendix A. In a standard Cartesian coordinate system

in three dimensions this reads

a ¼ � l1dx2 ^ dx3 � l 2dx1 ^ dx3 þ l 3dx1 ^ dx2
� �

� bi@i:

It is well known that the classical dislocation density tensor as an average object,

does not carry enough information about the dislocation state to deduce the rate of

plastic deformation @tb
pl from it. As @ta ¼ curl @tb

pl, or equivalently in the notion

of differential forms @ta ¼ d@tb
pl, the absence of a relation between a and the

deformation rate implies that the evolution of a itself cannot be formulated in closed

form. In other words, it is in general not possible to build a closed theory of plasticity

solely on the classical dislocation density tensor. However, the classical formulation

is suited for the treatment of single dislocations as singular densities, as well as for

the special situations where dislocations form smooth line bundles (dislocations in

the same volume element are parallel and have the same orientation), which is e.g.

exploited by Sedláček et al. in [12]. Only in these cases does the density function �

coincide with the total dislocation density and the average line direction l actually

gives the true direction of the dislocation lines. Due to the latter fact it makes sense in

this case to assign to the dislocation density a smooth velocity field t, which is at each

point orthogonal to the line direction l of the dislocations. The plastic distortion

tensor can consequently be deduced from Orowan’s equation as @tb
pl ¼ ��n� b in

traditional notation for conservative glide. Here � denotes a pseudo-scalar velocity

and n the glide plane normal. The differential form version of this looks virtually the

same if we introduce the dual 1-form n[ to n. This is defined by its action on a vector

x by assigning the scalar product with n, thus n[ðxÞ ¼ n � x: The plastic distortion rate

as a differential form then reads

@tb
pl ¼ ��n[ � b:

The corresponding closed evolution equation was first deduced by Mura [13].

We again compare the traditional notation to the differential form formulation

to find

@ta ¼ �curl ðt� aÞ ! @ta ¼ �Lta;

with L denoting the Lie derivative introduced in appendix A. It should be noted that

the velocity field may in this case originate from virtually any law able to assign

a velocity to a dislocation segment at any point.

In conclusion to our revision of the classical dislocation density measure, we

discuss its evolution equation as given in the form deduced by Sedláček et al. [12] for

a single glide system. The special form of this equation fosters the geometrical

understanding of the evolution and will later serve as a reference for the explicit

calculation of the generalized evolution equation in section 6.

A family of dislocations with the same Burgers vector which are bound to move

conservatively within the glide plane is considered. The glide plane can be

parametrized with the Cartesian coordinates x and y. The line-direction field

l ¼ lx@x þ l y@y has unit length klk¼ 1 with respect to the standard Euclidean norm.

A velocity field t ¼ �x@x þ �y@y ¼ �ly@x � �lx@y is given that is always orthogonal to l.

A three-dimensional continuum theory of dislocation systems 1265
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Again � denotes a pseudo-scalar velocity. Sedláček et al. use an illuminative

notation in that they parametrize the line direction by an angle ’, thus

l ¼ cos’@x þ sin ’@y, and consider ’ as a field variable. In this notation the

evolution equation for a ¼ �ildV� b can be split into an evolution equation for �

and one for ’ which are found as

@t� ¼ �divð�tÞ þ ��k and @t’ ¼ lð�Þ � �divl; ð5Þ

where k denotes the curvature of the integral curves of l and hence of the

dislocations. Here l(�) denotes the application of a vector field to a (pseudo) scalar

by acting as directional derivative, as discussed in appendix A. We emphasize that

the appearance of the curvature in a sort of source term ��k for the density � reflects

the change of total line length in the system due to the expansion or shrinkage of

curved dislocations.

2.2 Advanced dislocation density measures

Due to the fact that the classical dislocation density tensor in general gives only a

very incomplete picture of a dislocation distribution, several more refined dislocation

density measures have been proposed. A very appealing approach was proposed by

El-Azab [4], who took up a concept first introduced by Kosevich [3], classifying

dislocations at each point by their line directiony. This yields a measure

aeðr; !Þ ¼ �ðr; !ÞdVd�, where � reflects the number of dislocations in a volume

element dV around the point r with line direction contained in the solid angle

element d� around the direction !. In accordance with the notation introduced for a

class of similar measures in [5] we call this measure a statistical measure. The term

statistical refers to the fact that this measure gives only an incomplete picture of the

dislocation state in the sense that, after averaging, essential information required for

reconstructing the actual dislocation lines is lost (except for the case when one is

dealing with distributions of only straight dislocations). It was pointed out earlier,

see e.g. [14], that a drawback of this definition is the fact that dislocation populations

of different curvatures may, after averaging, be described by the same dislocation

density. Consequently any evolution equation solely built on this measure cannot

account for the change in total dislocation line length due to expansion or shrinkage

of dislocation loops which is relying on the curvature. From a formal point of view

the measure furthermore suffers from the fact that the dislocation direction does not

appear as a vector quantity but solely as a part of the configuration space.

This would be needed to turn the spatial 3-form dV into a 2-form by inner

multiplication. As shown in [5], this technical problem can be resolved by using

the formal definition ae;altðp; !Þ ¼ �ðr; !Þilð!ÞdVd�, which leaves the measure

yEl-Azab additionally classifies the dislocations by their velocity. If the dislocation velocity
can be formulated as a function of the orientation and position in space of a dislocation, this
classification is redundant (it is needed, on the other hand, if dislocations possess inertia). We
will not consider the velocity-dependent classification within the present paper, as it
complicates the presentation without helping to clarify the basic geometrical ideas.

1266 T. Hochrainer et al.
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a statistical one. However, this formal modification cannot overcome the deficiency

explained above.

The idea of a statistical dislocation density measure can be extended to

descriptions of higher order [5], for example by including the dislocation curvature �

into the configuration space. In the language of differential forms this yields the

measure

as r; !; �ð Þ ¼ � r; !; �ð Þi l !ð Þ;k �ð Þ;0ð ÞdVd� dK� b;

where k¼ k(�) is the curvature vector corresponding to the curvature � and dK

denotes the ‘volume element’ in curvature space. We refer to the next section for

more on the interpretation of the composed vector (l, k, 0 ) as a higher order tangent

to the dislocations. This statistical measure allows us to reconstruct the dislocation

lines only if all dislocations form circular loops or straight lines (loops with infinite

radius). Nevertheless it was shown in [5] that the evolution of a dislocation

configuration may be described by this measure if the dislocations are restricted to

conservative motion within their glide plane and if the absolute value of the velocity

of a dislocation segment only depends on the spatial point and not on the line

direction or the curvature of the segment. These are still serious restrictions as

compared to more realistic dislocation velocity laws (for instance segments of screw

and edge orientation may have very different mobilities) and it was shown in [5] that

even statistical approaches of higher order would not resolve this problem.

3. The new measure and its relation to the classical theory

As opposed to the statistical dislocation density measures discussed above, we may

denote the classical dislocation density tensor as a deterministic measure.

This notation results from the fact that from this tensor the dislocation lines can

be reconstructed as the flow lines (integral curves) of a vector field as long as the

dislocations form smooth line bundles. In fact, both ‘statistical’ and ‘deterministic’

measures imply restrictions on the dislocation distributions for which a reconstruc-

tion of the dislocation lines is possible; the classical dislocation density tensor needs

the assumption that dislocations form smooth line-bundles for which the orientation

is unique at each point in space, whereas for the measure introduced by El-Azab they

may have different orientations at a single point but the dislocation lines may be

reconstructed only if the dislocations are straight. These restrictions are, however, of

very different character. In particular, the restriction implicit in the deterministic

measure will be conserved during the evolution independently of the nature of the

applied velocity field, whereas this is not the case for the statistical measure as

initially straight dislocations may bend in inhomogeneous velocity fields.

The advantages of both measures, i.e. the absence of constraints on the

applicable velocity fields on the one hand, and the possibility of describing

dislocation arrangements with dislocations of different directions in the same spatial

volume element, on the other hand, can be combined in a higher dimensional

deterministic approach. This yields an object defined on the same configuration

A three-dimensional continuum theory of dislocation systems 1267
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space as the measure defined by El-Azab, i.e. a space which is made up of points r,

and of all directions ! at each point; this configuration space will be denoted by SM

in the following. If we denote the crystal manifold, i.e. the set of spatial points r, with

M and the unit sphere in three dimensions with S2 we obtain SM¼M�S2. Before we

give the precise definition of the measure we shall motivate it from the analogy to the

classical theory.

For the classical case to be exact we assumed that dislocations are distributed

such that nearby dislocations have the same direction and orientation. This makes it

possible to describe the dislocation state via a vector field l. Thus �(r) in this case

gives the total density of dislocations (necessarily with the corresponding line

direction l(r)) at a certain point r. The integral curves c of the vector field l

correspond to the dislocation lines. If we take the curves to be parametrized by the

arc-length s and denote differentiation with respect to s by a dot, we have _c ¼ l along

each curve. In the yet to be defined deterministic measure we do not consider as

constituting objects the dislocation lines themselves but rather their so-called ‘lift’ to

the configuration space SM. The lift of a curve is defined via its tangent vector

field _c. If c: [0, L)!M is a parametrization of a dislocation line by the arc-length s,

then _c is a unit vector field along the curve. For each s we can therefore assign a

direction !(s) which corresponds to _c sð Þ. Therefore the map

C : ½0;LÞ ! SM

s 7! c sð Þ; _c sð Þð Þ

defines a curve in SM which is called the lift of c. As an example, the lift of a planar

curve is shown in figure 1. Dislocations crossing the same spatial point in different

directions may as lifts be clearly distinguished because they are going through

different points in SM. For generalization of the vector field l we take a look at the

tangent of C. The tangent is found as _CðsÞ ¼ ð _cðsÞ; €cðsÞÞ and is a tangent vector to SM

at the point CðsÞ ¼ ðcðsÞ; _cðsÞÞ. The tangent in its first part _c coincides with the point

in SM while the second part €c is the curvature vector k of the curve. As a

consequence, a vector field L on SM which corresponds to tangents of lifted curves

must at the point (r,!) have the form Lðr; !Þ ¼ ðlð!Þ; kðr; !ÞÞ where the first part,

which is the spatial line direction, is determined by the considered point in SM.

The curvature vector k must be orthogonal to l because the same holds for €c with

respect to _c.

Considering this motivation we define a generalized ‘deterministic’ dislocation

density measure as

ad ¼ � r; !ð Þi l !ð Þ;k r;!ð Þð ÞdVd�� b; ð6Þ

where k(r,!) is a curvature vector field which must at each orientation ! be

orthogonal to l(!). If we introduce the volume element on SM as dV ¼ dVd�

the definition may be rewritten as

ad ¼ �iLdV � b;

which clearly shows the analogy to the classical definition via a ¼ �ildV� b.

Also, the fact that dislocations do not end inside a crystal displays in full analogy

to the classical theory in the requirement that ad is closed, thus dad¼0 (lifts of closed

1268 T. Hochrainer et al.
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curves are closed). This results in a coupling between the density function � and the

curvature vector field k because

dad ¼ Div �Lð ÞdV � b ¼ L �ð Þ þ �DivLð ÞdV � b:

Here we denote by Div the divergence operator on the configuration space SM.

The analogy to the classical case can also be extended to the evolution equation.

To this end we first have to define a generalized velocity V ¼ t;qð Þ which is capable

of describing the motion of a lifted curve rather than just of the curve itself. If the

motion of a dislocation line c is given by a velocity t along the line, we find that the

velocity of the lifted curve must additionally account for the rotation velocity q of

the line direction q :¼ @tl ¼ @tð _c=k _ckÞ. See figure 1 for a visualization of the concept.

It is evident and can also be formally shown [5] that the change of the local line

direction during the motion of a dislocation is determined by the derivative of the

velocity along the dislocation line – more precisely, that part of the derivative which

is orthogonal to the line direction. On the configuration space SM the dislocation

line is characterized by the generalized line direction L r; !ð Þ ¼ l !ð Þ; k r; !ð Þð Þ and we

define q r; !ð Þ ¼ rLt r; !ð Þð Þ?. We denote with r the (covariant) directional

derivative of a vector field. The use of the generalized line direction L instead of

–1

0

1

–1

–0.5

0

0.5

1

0

2

4

6

0

Figure 1. Visualization of the lift of a moving dislocation. The red curve represents a circular
dislocation loop which expands with the angular dependent velocity field depicted by black
arrows orthogonal to the curve. The blue curve is the lift of the dislocation with the vertical
axis giving the angle between the local line direction and a fixed axis. Notice that the
configuration space is periodic in the vertical direction and hence that the lifted curve is closed.
The green arrows indicate the lifted velocity field. It should be noted that the vertical
component of the tangent to the lifted curve corresponds to the curvature of the base curve
and that similarly the rotational part q of the lifted velocity shows up in the vertical
component of the latter.
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just the spatial line direction l here is necessary to capture the continuation of the

dislocation lines on SM correctly. We furthermore note that the definition of q

given above, which we motivate here from considerations of a single dislocation,

turns out to be necessary for a consistent continuum formulation as will be explained

in section 6.1 with reference to equation (13).

With the generalized velocity at hand, the evolution equation for the dislocation

density measure defined in (6) is given by

@tad ¼ �LVad: ð7Þ

It should be noted that the concepts presented in the present section heavily rely on

the formulation in terms of differential forms. While this is already important for the

precise definition of ad, it is essential for the formulation of the evolution equation.

The latter could not in general be formulated in terms of the curl operator which is

only defined in three (or two) dimensions. Furthermore, the concepts of differential

forms and currents are essential to understand the relation between the motion of the

single curve and the appearance of the Lie derivative in the evolution equation for

the density measure, as discussed in more detail in [6].

3.1 Geometrical restrictions

We briefly discuss the question of which dislocation states can be faithfully

represented by the generalized measure defined in this section. Similar to the classical

case where all dislocations passing through a certain volume element must have the

same direction and orientation, we now have to assume that nearby dislocations with

nearly the same direction and orientation (i.e. those which are passing the same

volume element in SM¼M�S2) have the same curvature. This restriction is

obviously much weaker than the classical one, even though it is not easily visualized

what this means for admissible distributions globally. Locally, however, there are

several arguments which make this assumption seem not too restrictive. In a

quasistatic picture the dislocation curvature will essentially be a function of the local

stress, as the corresponding force on the dislocation would have to be compensated

by the line-tension force which is proportional to the curvature. It should be noted

that in a coarse-grained theory, both the stress and the curvature have to be

considered as coarse-grained quantities which still allow for fluctuations on the

microscale, e.g. due to the nearby dislocations. In a truly dynamic situation

the above restriction will in general not be fulfilled. But for this case another

advantage compared to the classical dislocation density tensor is striking. Even if one

starts out from a more general dislocation distribution than can be reflected by the

measure (i.e. from a distribution where different dislocations passing the same

volume element in SM have different curvatures), an averaged curvature is still

a meaningful quantity which is not the case for the averaged line direction in the

classical case. A simple indication for this is that a dislocation arrangement may have

a zero net tangent vector such that the average orientation becomes meaningless;

a zero average curvature in contrast still has a well-defined meaning. Furthermore we

consider the correspondence between averaged curvature and actual curvature not as

essential as the one between averaged direction and actual line direction; the latter is

1270 T. Hochrainer et al.
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indispensable to be able to define a meaningful velocity field, whereas it may be

feasible to replace the actual curvature by the averaged one.

3.2 Relation to the classical dislocation density tensor

Obviously it should be possible to recover the classical dislocation density and its

evolution from the generalized dislocation density measure. To this end we introduce

a concept which was already implicitly used in the preceding. Each tangent vector to

SM can be split into a spatial part and a rotatory part, as seen for example from

L¼ (l, k) and V ¼ t;qð Þ. Similarly, each tangent vector x to the crystal manifold M

may be formally ‘lifted’ to obtain a tangent vector xh to SM by setting xh¼ (x, 0).

With the aid of this concept we define the dislocation density tensor from the

generalized dislocation density measure by its action on two tangent vectors x and y

(tangent to a fixed point r which is suppressed in the notation) as

a x; yð Þ :¼

Z

S2

iyh ixhad ¼

Z

S2

� !ð Þ det l !ð Þ; x; y½ �d� !ð Þ � b: ð8Þ

This obviously defines a 2-form because it is antisymmetric in x and y and linear in

both arguments because the same holds true for ad. Before we justify this definition

by demonstrating that it yields the correct relation between the dislocation density

tensor and the plastic distortion, we at first check that a indeed defines a closed

differential form. It will be shown that this is a direct consequence of the requirement

that ad is closed (dad¼ 0). We demonstrate this in integral form and refer to

appendix A for more on the integration of differential forms and the generalized

Stokes’ theorem. Let G be an open subset of the crystal which allows us to apply

Stokes’ theorem. Then we find

Z

G

da ¼
Stokes

Z

@G

a ¼
ð8Þ
Z

@G�S2

ad ¼
Stokes

@S2¼;

Z

G�S2

dad ¼ 0;

which is equivalent to da¼ 0 because it must hold for every admissible G.

To justify the definition of a we first define the 1-form of the plastic distortion

rate by

@tb
pl xð Þ ¼ �

Z

S2

ixh iVad ¼ �

Z

S2

� !ð Þ det l !ð Þ; t !ð Þ; x½ �d� !ð Þ � b: ð9Þ

That this definition recovers the classical definition of @tb
pl can be seen as follows.

If the dislocations are moving in a plane one finds l !ð Þ � t !ð Þ � �� !ð Þn with the

glide plane normal n and a signed scalar velocity �(!). The actual sign on the right

hand side is a matter of convention for the scalar velocity � (or optional for the

normal n ) which we choose such that the minus sign holds. As a consequence we find

det l !ð Þ; t !ð Þ; x½ � ¼ l !ð Þ � t !ð Þð Þ � x � �� !ð Þn � x. For a fixed glide system we may

A three-dimensional continuum theory of dislocation systems 1271
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therefore, in accordance to the classical case (see section 2.1), characterize the plastic

distortion rate by the dual 1-form n[ to the slip plane normal n as

@tb
pl

:¼

Z

S2

� !ð Þ � !ð Þd� !ð Þnb � b:

This obviously recovers the classical definition via the Orowan equation. In the limit

where only one orientation is present locally (i.e. the dislocation lines form parallel

bundles) this expression reduces to the one discussed previously in section 2.1.

We now ask whether the above definition of the classical dislocation density

tensor coincides with the classical relation between plastic distortion and plastic

deformation, a ¼ dbpl. In fact we can only check this equation in rate form

@ta ¼ d@tb
pl. We consider a surface F in the crystal which allows us to apply Stokes’

theorem and find

@t

Z

F

a¼
ð8Þ
@t

Z

F�S2

ad ¼
ð7Þ
�

Z

F�S2

diVad ¼
Stokes

@S2¼;
�

Z

@F�S2

iVad ¼
ð9Þ
Z

@F

@tb
pl: ð10Þ

As this holds for every admissible F this constitutes the integral version of the rate

equation in question.

Obviously the curvature k does not appear in the definitions of the classical

objects. One may therefore ask whether or why the curvature is needed to predict the

evolution of the system. The reason will become apparent in section 6 where we find

the evolution of � to be dependent on the curvature.

We summarize that from the generalized dislocation density measure ad and its

evolution equation the classical dislocation density theory including the plastic

deformation can be recovered. The evolution of the plastic deformation is thereby

directly deduced from the evolution of the dislocation state even in a fully three-

dimensional formulation.

4. The conservation laws

The evolution equations both for the classical and for the generalized dislocation

density measure can be interpreted as conservation laws. For the classical dislocation

density tensor the integral version of the evolution equation is determined by

integration over a surface F as

@t

Z

F

a ¼ �

Z

@F

ita ¼

Z

@F

@tb
pl:

This means that any change of the net Burgers vector content of F may only be due

to the flow of net Burgers vector across the boundary @F of the surface. The 1-form

ita may be viewed as the dislocation flux corresponding to a density of infinitesimal

swept surfaces. We recall that in classical vector notation this 1-form would in

accordance with a ¼ �ildV be written as �t� l, which makes the interpretation of

t� l as an infinitesimal swept surface obvious.
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The corresponding conservation law for the generalized measure is obtained via

integrating over a so-called hypersurface F in the configuration space SM:

@t

Z

F

ad ¼ �

Z

@F

iVad: ð11Þ

A hypersurface is a subspace of co-dimension one, which means it has one

dimension less than the surrounding space. In our case, SM will, for a

three-dimensional crystal, have five dimensions (three spatial and two directional)

and therefore F is supposed to be a smooth four-dimensional subspace.

The interpretation of the generalized conservation law is analogous to the classical

one, although our visualization struggles with the extra dimensions. But a special

case was already treated at the end of the last subsection. There, the hypersurface

F arose as a product of a spatial surface F with the full directional space S2,

thus F ¼ F�S2. For this case the generalized conservation law (11) reproduces

the classical one, as was seen in the calculation (10).

As a concluding remark we note that both conservation laws show that the

conserved quantity in either case is the total number of dislocation loops and not the

total line length.

5. Mean field approximation

We already saw that the generalized deterministic dislocation density measure allows

for a closed theory of plasticity in the sense that the evolution of the dislocation state

uniquely determines the plastic deformation of the crystal. However, until this point

we only gave a purely kinematic picture and assumed the velocity distribution which

is needed to deduce the evolution of the density measure as given. A physically sound

derivation of the dislocation velocity as a functional of the dislocation density

measure, as obtained in [15] and [1] by statistical averaging for simplified two-

dimensional systems, will be a challenging future task in three dimensions; but the

first step towards a physically based modelling, namely the mean field approxima-

tion, can also easily be determined for the generalized measure. This simplest

statistical approximation neglects the spatial correlations of the dislocations and

assumes that the probability �(r,!) of finding a dislocation with line direction l(!) at

the point r does not depend on the arrangement of the surrounding dislocations

(local density approximation). This implies that short-range interactions between the

dislocations are neglected while long-range interactions are still described correctly.

One particular kind of short-range interaction, namely the short-range

self-interaction of a dislocation, can, however, easily be included into the theory

by using a line-tension approximation.

5.1 Internal stresses

Long-range interactions of dislocations are a topic of the classical continuum theory

of dislocations and were extensively discussed by Kröner [2,11]. There it is shown

A three-dimensional continuum theory of dislocation systems 1273
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how the internal stress �int að Þ can be determined from the classical dislocation density

tensor a. As was shown in subsection 3.2 the classical dislocation density tensor a can

be determined from ad. Therefore the internal stress can be determined from the

current dislocation state characterized by ad by simple recourse to the classical

theory. If additionally an external stress �ext is applied, both stresses add up to

� ¼ �ext þ �int.

This allows for a simple self-consistent model when, for example, overdamped

conservative dislocation motion is assumed. Consequently the dislocation velocity is

taken to be proportional to the projection of the Peach–Koehler force FPK ¼ � � b� l

onto the glide plane. The mobility of the dislocations is taken to be the inverse of

the so-called drag coefficient B(l) which will in general depend on the line

direction l explicitly. If we denote the projection operator of the glide plane as P we

thus find

t lð Þ ¼ B�1 lð ÞP FPKð Þ ¼ B�1 lð ÞP �ext þ �intð Þ � b� lð Þ:

5.2 Line tension

The line tension T is formally defined as the change of stored energy due to an

infinitesimal increase in length of the dislocation. For dislocations in contrast to taut

elastic strings this concept may imply several subtleties; for example, the line tension

may depend on the character of the dislocation and also, though weakly

(logarithmically), on the arrangement of surrounding dislocations. Within the

present qualitative discussion we avoid specifying the exact form of the line tension.

For us, the important characteristic of the line-tension approximation is that it

produces a force Ft on the dislocation. This force locally points in the direction

opposing the direction of maximal possible increase in line length when the

dislocation moves. This means that it points in the direction of the curvature vector,

thus Ft ¼ Tk. Consequently the dislocation velocity would be modified as

t lð Þ ¼ B�1 lð ÞP �ext þ �intð Þ � b� lþ Tkð Þ:

6. Explicit formulation in two dimensions

The following example is a generalization of the two-dimensional case treated by

Sedláček et al. in [12], which was sketched at the end of section 2.1. Accordingly, we

assume a system that is homogenous in the z direction such that the evolution of the

dislocation system is completely specified by their motion in the xy-plane. Different

from Sedláček et. al. however, we allow for dislocations with different directions

at each point. (This obviously implies that our volume element is large enough to

contain dislocations moving on different glide planes such that the dislocations do

not necessarily intersect each other.) We parametrize the directional space at

each point by an angle ’ and therefore work on the configuration space

SM ¼ R2 � S1 ¼ R2 � ½0; 2�Þ. Please note that the angle ’, as a constituent of the

1274 T. Hochrainer et al.
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configuration space, plays in this case a very different role than in the notion of

Sedláček et al. [12] (see the end of section 2.1), where it was considered as field

variable. A role similar to that of the angle ’ in [12] will, however, be taken by the

(pseudo) scalar field variable k which represents the curvature.

We have to make a sign convention in order to define the generalized line

direction L. In general this takes the form

L ¼ cos ’@x þ sin ’@y þ k@’;

with a (pseudo) scalar field k. The sign of k is a matter of convention and we consider

a circular loop oriented counter-clockwise as positively curved, k40.

The definition of ad via interior multiplication necessitates the choice of a

volume element dV on SM. We chose to work with the volume element

dV ¼ dx ^ dy ^ d’, which facilitates the calculations. Every other choice of the

volume element would yield an equivalent theory if � were adjusted accordingly.

With the current choice the dislocation density measure reads

ad ¼ �iLdV ¼ � cos ’dy ^ d’� sin’dx ^ d’þ kdx ^ dyð Þ � b:

For later use we introduce a vector field R¼ �L which reads

R ¼ � cos ’@x þ � sin ’@y þ �k@’ ¼: Rx@x þ Ry@y þ R’@’:

We can recapture the field variables � and k which characterize the dislocation state

from this vector field as

� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Rxð Þ2þ Ryð Þ2
q

and k ¼
R’

�

� �

:

The continuity equation dad¼ 0 is equivalent to the requirement that DivR¼ 0,

because ad ¼ iRdV � b. For the current example we find

dad ¼ lx@x þ ly@y þ k@’
� �

�þ �@’k
� �

dV � b ¼ 0;

as the necessary coupling between � and k.

6.1 Kinematic evolution equation

The evolution of the above-defined measure can clearly be described through the

evolution of � and k. In order to deduce the corresponding equations we first analyze

the generalized velocity for which we make a further sign convention. We will regard

the velocity of a positively oriented loop as positive if the loop expands. This fixes the

sign of the pseudo-scalar velocity � in the representation of the vectorial velocity as

A three-dimensional continuum theory of dislocation systems 1275
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t ’ð Þ ¼ � sin ’@x � � cos ’@y. The rotation velocity, in general given by q ¼ rLtð Þ?,

is then found as

q ¼ L � sin ’@x � � cos ’@y

� �� �?

¼ L �ð Þ sin’@x þ �k cos ’@x � L �ð Þ cos ’@y þ �k sin’@y

� �?

¼ �L �ð Þ � sin’@x þ cos ’@y

� �

¼ �L �ð Þ@’ ¼: #@’:

Therefore the generalized velocity reads

V ¼ � sin ’@x � � cos ’@y � L �ð Þ@’:

For the further analysis we recall a general fact resulting from the product rules for

the Lie derivative given in appendix A. They yield

@tad ¼ �LVad

¼ �V �ð ÞiLdV � �i V;L½ �dV � �Div Vð ÞiLdV
� �

� b

¼ �Div �Vð ÞiLdV � �i V;L½ �dV
� �

� b: ð12Þ

The Lie bracket appearing on the right hand side of the last equation is explicitly

calculated as

V;L½ � ¼ V cos ’ð Þ � L � sin’ð Þð Þ@x

þ V sin’ð Þ þ L � cos ’ð Þð Þ@y þ V kð Þ � L #ð Þð Þ@’

¼ �# sin ’� L �ð Þ sin’� �k cos ’ð Þ@x

þ # cos ’þ L �ð Þ cos ’� �k sin ’ð Þ@y þ V kð Þ � L #ð Þð Þ@’

¼ ��k cos ’@x � �k sin’@y þ V kð Þ � L #ð Þð Þ@’: ð13Þ

This result is used to obtain the evolution equation of the vector field R¼�L

using the fact that @tad ¼ i@tRdV � b. By inserting equation (13) into (12)

we therefore find

@tR ¼ �div �Vð Þ þ ��kð Þ cos ’@x þ �div �Vð Þ þ ��kð Þ sin’@y

þ �div �Vð Þk� � V kð Þ � L #ð Þð Þð Þ@’: ð14Þ

It should be noted that the spatial part of R stays a multiple of the canonical

direction l ’ð Þ ¼ cos ’@x þ sin ’@y, and that this results from the definition # ¼ �L �ð Þ,

as can be seen from the derivation of equation (13). In fact this is the reason why the

definition of q as given in section 3 is a necessary condition for the evolution

equation to be consistent with the definition of ad in equation (6).

From equation (14) we easily obtain the evolution of the density as

@t� ¼ @t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Rxð Þ2þ Ryð Þ2
q

¼ �Div �Vð Þ þ ��k; ð15Þ

1276 T. Hochrainer et al.
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and the evolution of the curvature as

@tk ¼ @t

R’

�

� �

¼
@tR

’�� R’@t�

�2

¼
� �Div �Vð Þk� � V kð Þ � L #ð Þð Þð Þ � �k �Div �Vð Þ þ �vkð Þ

�2

¼ �vk2 þ L #ð Þ � V kð Þ: ð16Þ

We emphasize the close formal analogy with the evolution equations found by

Sedláček et al. as given in equation (5). The evolution equation of the density

function (15) is formally analogous to the result cited above (note, however, that

the Div operator is operating on a higher-dimensional space which includes the

orientation), and the role of the curvature for the increase in total line length is

the same. The correct evolution of the curvature therefore is essential and the

corresponding equation (16) will be analyzed in more detail. The first two terms in

the last line are easily seen to represent the Lagrangian time derivative of the

curvature. The first term, ��k2, is the change of curvature like that found for a

circular loop of radius r¼ 1/k, which expands (or shrinks) with velocity v. In this case

we have r(t)¼ rþ�t and therefore

@tk ¼ @t

1

r

� �

¼
��

r2
¼ ��k2:

The second term, L #ð Þ ¼ �L L �ð Þð Þ, accounts for the second derivative of the velocity

along the dislocation line, which clearly yields a proportional change in curvature.

The third term, �V(k), accounts for changes of the curvature in the direction of

motion.

We conclude the explicit calculations by deducing the classical dislocation

density tensor and the plastic deformation rate for this case. We assume a spatial

vector x ¼ xx@x þ xy@y as given. This is canonically lifted to the configuration space

as xh ¼ x; 0ð Þ :¼ xx@x þ xy@y þ 0@’. The interior multiplication of ad with xh is

found as

ixhad ¼ ��kxydxþ �kxxdyþ � xy cos ’� xx sin ’ð Þ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼det l; x½ �

d’

8

<

:

9

=

;
� b:

Therefore ixhad @’
� �

¼ � ’ð Þdet l ’ð Þ; x½ � b and we obtain for the classical dislocation

density tensor in analogy to (8):

a xð Þ ¼

Z

S1

ixhad � b ¼

Z 2�

0

� ’ð Þdet l ’ð Þ; x½ �d’� b:

Accordingly we define �xb ¼ a @xð Þ ¼ �
R 2�

0
� sin’d’ b and �yb ¼ a @y

� �

¼
R 2�

0
� cos ’d’ b. If in turn we want to represent a by a density �� and a line

direction �l as a ¼ ��i �ldV� b we find �� ¼ ð�2x þ �2yÞ
1=2 and �l ¼ ���1ð�y@x � �x@yÞ.
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Analogously and in accordance with (9) we define the plastic deformation

rate via

@tb
pl ¼ �

Z

S1

iVad ¼ �

Z 2�

0

iVad @’
� �

d’

¼ �

Z 2�

0

� ’ð Þdet l ’ð Þ; � ’ð Þ½ �d’ b

¼

Z 2�

0

� ’ð Þt ’ð Þd’ b:

We again note that this is the common definition of the plastic distortion rate as

determined from Orowan’s equation.

6.2 Example

A very simple example which is not accessible to the other dislocation density

measures mentioned in this paper is obtained from assuming a homogeneous

distribution of circular dislocation loops with fixed radius r as initial state. If a

denotes the average spacing between the centres of these loops, the density function

is constant on the configuration space and given by �¼ r/a2 within the two-

dimensional model introduced above. Furthermore, let the velocity � be such that

the scalar velocity � is constant and consequently r tð Þ ¼ rþ �t. Considering that

k¼ 1/r the evolution equations then reduce to @t� ¼ ��k ¼ �=a2 and

@tk ¼ ��k2 ¼ ��=r2. This obviously complies with what is obtained when the

time-dependent radius is inserted directly into the definition of � and k.

In this example the Kröner tensor vanishes identically and the plastic distortion

rate is given by @tb ¼ 2��� b:

7. Summary and outlook

We defined a dislocation density measure as a differential form on the space made up

of all directions at each point of a crystal. It was shown that this measure and its

evolution equation are in every respect natural generalizations of the classical

dislocation density tensor and its evolution. The evolution of the generalized

dislocation density measure is able to reflect in a kinematically precise fashion the

evolution of a dislocation system where dislocations passing the same volume

element in SM have the same curvature. The plastic distortion rate and its relation to

the classical dislocation density tensor can be recovered from the generalized

evolution equation in a mathematically consistent and rigorous manner. As a first

step towards a physically based three-dimensional theory of plasticity we presented a

mean-field theory of curved dislocations built upon the introduced dislocation

density measure. In a two-dimensional example the abstract notions were animated

and the curvature of the dislocations was shown to play a crucial role for the correct

evolution of the dislocation density.

1278 T. Hochrainer et al.
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The presented approach includes several restrictions and simplifying assump-

tions: The geometrical restriction on faithfully representable dislocation distributions

was already mentioned in the last paragraph. A proper understanding of the

consequences of this restriction will have to be addressed in future work.

No dislocation sources or annihilation are included in the model. The inherent

change of total line length due to bowing of dislocations partly compensates for these

effects – note, for instance, that the annihilation of two dislocation segments can be

interpreted as the formation and subsequent motion of a segment with initially

infinite negative curvature upon the encounter of two loops. Furthermore the

approach was restricted to one active glide system. From a mathematical point of

view the extension to several glide systems does not introduce new fundamental

problems but would require working with several similar dislocation density

measures. From a physical viewpoint, however, the treatment of the mutual

interactions between the dislocations on different glide systems is likely to complicate

things a lot. Mathematical ideas for the modelling of some of these interactions have

been presented by El-Azab in [4].

For a numerical implementation of the present theory the extra dimensions from

the directional space together with the inherent non-locality form a major challenge.

Otherwise the obtained evolution equations together with the Orowan equation may

substitute the constitutive rules used to determine the plastic deformation in usual

finite element schemes in the same fashion as discrete dislocation simulations were

used in the so-called discrete–continuum simulations by Lemarchand et al. [16].

We remark that with this procedure the long-range internal stresses needed for a

mean-field theory emerge directly from the elastic distortions which have to

compensate for inhomogeneous plastic distortions. Simple numerical examples based

on the presented approach can be found in [7].
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A. Differential forms

Differential forms are a standard tool in differential topology and differential

geometry as well as in different branches of physics. Accordingly there is a huge

number of standard textbooks dealing with differential forms. A good introduction

is given in [17], whilst [18] serves as a reference for the results shown and

notation used in the following. We consistently use the Einstein summation

convention.
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A.1 Vector fields and differential 1-forms

Before we introduce differential forms we revisit some notation commonly used in

differential geometry. An important concept is the understanding of tangent vectors.

xjr (vectors annexed to a spatial point r) as differential operators which act on

functions f at r by xjr fð Þ ¼ xi @

@xi

�
�
�
�

ð f Þ

�

. The underlying space is considered

n-dimensional and for the above notation it makes no difference whether we think

of it as a general n-dimensional manifold in a chart or simply of Rn with standard

coordinates. The
@

@xi

�
�
�
�
�

¼: @ijr can be considered as elements of a local basis for

tangent vectors.

In addition to tangent vectors we define co-vectors or 1-forms (sometimes also

called Pfaffian forms) as locally linear mappings from a tangent space to the real

numbers. Each 1-form x is locally given by n functions !i(r) (similar to a vector) by

setting !i rð Þ ¼ x @ijrð Þ. Formally we can define a local basis dxi
�
�
r
for co-tangent

vectors by demanding dxijrð@jjrÞ ¼ �i
j, with the Kronecker delta �i

j. Then obviously

x ¼ !idxi. The best-known example of 1-forms are those arising as differentials of a

function f denoted by df ¼ @ifdxi. They act on a vector x in a dual way to the vector

acting on the function f by df xð Þ ¼ xi@if.

A.2 Higher-order differential forms

A (differential) p-form is a covariant tensor A ¼ Ai1���ip dxi1 � � � � � dxip of

order p which obeys for each permutation � of order p the relation

A x� 1ð Þ; . . . ; x� pð Þ

� �

¼ sign� A x1; . . . ; xp

� �

. The integer p is called the degree of the

form; functions are considered as 0-forms. We define the alternating ‘wedge’ product

^ of a p-form x and a q-form h as the (p+q)-form given by

x ^ h x1; . . . ; xpþq

� �

¼
1

p!q!

X

�

sign�x� h x� 1ð Þ; . . . ; x� pþqð Þ

� �

: ð17Þ

This product is associative, thus x ^ hð Þ^g ¼ x ^ h ^ gð Þ, and for x and h as in (17)

we have x ^ h ¼ �1ð Þpqh ^ x. We receive a basis for the space of differential p-forms

from the alternating products dxi1 ^ � � � ^ dxip of the basis of 1-forms dxi by requiring

the indices to be sorted by i1 < � � � < ip. Each p-form x can then be written as

x ¼ !i1���ip dxi1 ^ � � � ^ dxip .

For a p-form x the inner multiplication with a vector field x is the (p� 1)-form

ixx defined by ixx x1; . . . ; xp�1

� �

¼ x x; x1; . . . ; xp�1

� �

. In standard tensor notation

this is a contraction of x with the first index of x.

A.3 Calculus on differential forms

The exterior derivative d of a p-form x is a (p+1)-form defined by

dx ¼ d!i1���ip ^ dxi1 ^ � � � ^ dxip ¼
@!i1���ip

@xi
dxi ^ dxi1 ^ � � � ^ dxip :

1280 T. Hochrainer et al.
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In standard three-dimensional space d corresponds to the grad, curl and div operator

on 0-, 1- and 2-forms, respectively. As a simple consequence from standard calculus

one obtains d � d � 0 (compare curl grad � 0 and div curl � 0). Differential forms u

with dx¼ 0 are called ‘closed’.

Another important differential operation in the theory of differential

forms is the so-called Lie derivative. The Lie derivative of a differential form

in the direction of a vector field x leaves the degree of a differential form

fixed. It can be defined by combining the exterior derivative and the inner

multiplication as

Lxx ¼ d ixxþ ix dx:

The Lie derivative of differential forms emerges as a generalization of the Lie

derivative defined on vector fields, which is usually written with the so-called

Lie brackets �; �½ �. In local coordinates the Lie derivative of a vector field y in the

direction of x reads

Lx yð Þ ¼: x; y½ � ¼ xj@j y
i

� �

� yj@j x
i

� �� �

@i:

This allows us to formulate the fact that

Lxiyx ¼ i x;y½ �xþ iyLxx;

for each p-form x. Furthermore, for every smooth function f:

Lx fxð Þ ¼ x fð Þxþ fLxx:

If a standard volume density dV is defined on the underlying space (thus each n-form

x can be written as x¼ �dV ), the divergence of a vector field x with respect to this

volume density is defined by

LxdV ¼ dðixdVÞ ¼ divx dV:

A.4 Integration of differential forms

Perhaps the most important property of differential p-forms is that they can be

invariantly integrated over subspaces of dimension p. For reasons of space we shall

only give four examples in standard three-dimensional space. A 0-form f is

‘integrated’ over a point r as
R

r
f ¼ f rð Þ. A 1-form e is integrated over a curve

c : ½0;TÞ ! R
3 = t 7! c tð Þ via

R

c
e ¼

R T

0
ejcðtÞðdc=dtÞdt. A 2-form f is integrated over

a surface. Let F be a surface parametrized by a map a : O! R
3 = x; yð Þ7!a x; yð Þ,

with an open subset O � R2, such that F ¼ a Oð Þ. Then,
R

F
f ¼

R R

O
�jaðx;yÞðda=dx; da=dy

�

dxdy. A 3-form d is integrated over a suitable domain

G � R3 as
R

G
d ¼

R

G
dj x;y;zð Þ @x; @y; @z

� �

dxdydz if G is parametrized by standard

coordinates. If we write d ¼ �dV with a density function � this yields the common

form
R

G
d ¼

R

G
�dV. The term ‘invariantly’ used above refers to the fact that the

A three-dimensional continuum theory of dislocation systems 1281



D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

ita
et

sb
ib

lio
th

ek
 K

ar
ls

ru
he

] A
t: 

10
:2

0 
15

 J
an

ua
ry

 2
00

8 

transformation law for differential forms automatically includes the change of

variables formula, as known from the integration of functions.

A.5 Stokes’ theorem

The integral theorems of Gauss and Stokes turn out to be special cases of the general

Stokes’ theorem which says that for a differential (n� 1)-form on an n-dimensional

manifold M with boundary @M we have
Z

M

dx ¼

Z

@M

x:
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